Sri-Vigneshwar-DJ/Llama-3.3-70B-4bit

This model was converted to GGUF format from meta-llama/Llama-3.3-70B-Instruct using llama.cpp This model was converted to GGUF format from unsloth/Llama-3.3-70B-Instruct-bnb-4bit using llama.cpp Refer to the original model card for more details on the model.

Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux) from []

brew install llama.cpp or !git clone https://github.com/ggerganov/llama.cpp.git

Invoke the llama.cpp server or the CLI.

CLI:

! /content/llama.cpp/llama-cli -m ./Llama-3.3-70B-4bit -n 90 --repeat_penalty 1.0 --color -i -r "User:" -f /content/llama.cpp/prompts/chat-with-bob.txt

or

llama-cli --hf-repo Sri-Vigneshwar-DJ/meta-llama/Llama-3.3-70B-4bit --hf-file FP8.gguf -p "Create Meta Ads Templates"

Server:

llama-server --hf-repo Sri-Vigneshwar-DJ/Llama-3.3-70B-4bit --hf-file FP8.gguf -c 2048

Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.

git clone https://github.com/ggerganov/llama.cpp

Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1 flag or ''!make GGML_OPENBLAS=1' along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

cd llama.cpp && LLAMA_CURL=1 make

or

!make GGML_OPENBLAS=1

Step 3: Run inference through the main binary.

./llama-cli --hf-repo Sri-Vigneshwar-DJ/Llama-3.3-70B-4bit --hf-file FP8.gguf -p "The meaning to life and the universe is"

or

./llama-server --hf-repo Sri-Vigneshwar-DJ/Llama-3.3-70B-4bit --hf-file sFP8.gguf -c 2048

Step 4: On Ollama

Downloads last month
138
Safetensors
Model size
37.4B params
Tensor type
F32
BF16
U8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Sri-Vigneshwar-DJ/Llama-3.3-70B-4bit

Quantized
(63)
this model