Model
llava-dinov2-internlm2-7b-v1 is a LLaVA model fine-tuned from InternLM2-Chat-7B and Dinov2-large with LLaVA-Pretrain and LLaVA-Instruct by XTuner. I thank the help of Zhihao Lin and pppppM from the Xtuner team. I also thank the Huggingface transformers team for approving my pull request so training Dinov2 in bf16 becomes possible.
I did not carefully tune the training hyperparameters but the model still show capability to solve some tasks. It shows that a visual encoder can be integrated with an LLM, even when the encoder is not aligned with natural language with contrastive learning like CLIP.
Future development of Dinov2 based LLaVA
Using Dinov2 as the vision encoder of LLaVA may have some disadvantages. Unlike CLIP, Dinov2 is not pre-aligned with language embedding space. Even if you use both CLIP and Dinov2 and mix their tokens, the benchmark perfermance is not very strong (see arxiv:2401.06209 and the following table from their paper).
If you have any idea to improve it, please open an issue or just send an email to [email protected]. You are welcomed!
Example
Explain the photo in English: Explain the photo in Chinese:
Rank
Results
Model | MMBench Test (EN) | MMBench Dev (EN) | MMBench Test (CN) | MMBench Dev (CN) | CCBench Dev |
---|---|---|---|---|---|
LLaVA-v1.5-7B | 67.7 | 69.2 | 61.0 | 59.7 | 28.4 |
LLaVA-InternLM-7B | 69.0 | 68.5 | 66.7 | 63.8 | 37.3 |
LLaVA-InternLM2-7B | 73.3 | 74.6 | 71.7 | 72.0 | 42.5 |
llava-dinov2-internlm2-7b-v1 | 64.0 | 65.2 | 62.9 | 61.6 | 45.3 |
Installation
git clone https://github.com/InternLM/xtuner
pip install -e ./xtuner[deepspeed]
apt install git-lfs
cd ./xtuner
# Now replace the source code files with the modifed version in modified_xtuner_code directory
Chat
xtuner chat internlm/internlm2-chat-7b \
--visual-encoder facebook/dinov2-large\
--llava ./lora_and_projector \
--prompt-template internlm2_chat \
--image $IMAGE_PATH
Common Errors
1.
command error: 'libGL.so.1: cannot open shared object file: No such file or directory'!
You can solve it by
# For Ubuntu
sudo apt-get update
sudo apt-get install libgl1-mesa-glx
# For CentOS and Fedora
sudo yum install mesa-libGL
Error: mkl-service + Intel(R) MKL: MKL_THREADING_LAYER=INTEL is incompatible with libgomp.so.1 library.
Try to import numpy first or set the threading layer accordingly. Set MKL_SERVICE_FORCE_INTEL to force it.
You can solve it by reinstall numpy.
ImportError:
InternLM2Converter requires the protobuf library but it was not found in your environment. Checkout the instructions on the
You just need
pip install protobuf
- To use tensorboard to visualize the training loss curve:
pip install future tensorboard
- If your training process is killed during data preprocessing, you can modify the
map_num_proc
in xtuner/xtuner/dataset /huggingface.py
def process(dataset,
do_dataset_tokenization=True,
tokenizer=None,
max_length=None,
dataset_map_fn=None,
template_map_fn=None,
max_dataset_length=None,
split='train',
remove_unused_columns=False,
rename_maps=[],
shuffle_before_pack=True,
pack_to_max_length=True,
use_varlen_attn=False,
input_ids_with_output=True,
with_image_token=False,
map_num_proc=32): # modify it to a smaller number, e.g., 4
- If you fail to load the model, check whether you installed git-lfs and actually downloaded the model file.
Data prepration
- File structure
# . means the llava-dinov2-internlm2-7b-v1 folder you clone
./data/llava_data
βββ LLaVA-Pretrain
β βββ blip_laion_cc_sbu_558k.json
β βββ blip_laion_cc_sbu_558k_meta.json
β βββ images
βββ LLaVA-Instruct-150K
β βββ llava_v1_5_mix665k.json
βββ llava_images
βββ coco
β βββ train2017
βββ gqa
β βββ images
βββ ocr_vqa
β βββ images
βββ textvqa
β βββ train_images
βββ vg
βββ VG_100K
βββ VG_100K_2
- Pretrain Data
LLaVA-Pretrain
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain --depth=1
- Finetune Data
3.1 Text data
LLaVA-Instruct-150K
```shell
# Make sure you have git-lfs installed (https://git-lfs.com)
git lfs install
git clone https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K --depth=1
```
3.2 Image data
3.2.1 COCO (coco): train2017
3.2.2 GQA (gqa): images
3.2.3 OCR-VQA (ocr_vqa): download script
β οΈβ οΈβ οΈ Modify the name of OCR-VQA's images to keep the extension as `.jpg`!
```shell
#!/bin/bash
ocr_vqa_path="<your-directory-path>"
find "$target_dir" -type f | while read file; do
extension="${file##*.}"
if [ "$extension" != "jpg" ]
then
cp -- "$file" "${file%.*}.jpg"
fi
done
```
3.2.4 TextVQA (textvqa): train_val_images
3.2.5 VisualGenome (VG): part1, part2
Cheers! Now train your own model!
- Alignment module pretraining
NPROC_PER_NODE=8 xtuner train ./llava_internlm2_chat_7b_dinov2_e1_gpu8_pretrain.py --deepspeed deepspeed_zero2
Remember to change the batch size and gradient accumulation parameters to fit your hardware. So your GPU_num * batch_size * gradient_accumulation is roughly equal to mine to reproduce the result.
The checkpoint and tensorboard logs are saved by default in ./work_dirs/. I only train it for 1 epoch to be same as the original LLaVA paper. Some researches also report that training for multiple epochs will make the model overfit the training dataset and perform worse in other domains.
- Instruction following fine-tuning
NPROC_PER_NODE=8 xtuner train ./llava_internlm2_chat_7b_dinov2_e1_gpu8_finetune.py --deepspeed deepspeed_zero2
Here is my loss curve (the curve fluctuates strongly because the batch size is small, and I only record batch loss instead of epoch loss):
Transfer the checkpoints to Huggingface safetensor format
xtuner convert pth_to_hf ./llava_internlm2_chat_7b_dinov2_e1_gpu8_finetune.py ./work_dirs/epoch_1.pth ./my_lora_and_projector
The adapter still need to be used with the internlm/internlm2-chat-7b and facebook/dinov2-large models. I have not tried to merge them yet but it is possible with Xtuner, see this tutorial.
MMBench Evaluation
You can first download the MMBench data:
wget https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_EN.tsv
wget https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_EN.tsv
wget https://opencompass.openxlab.space/utils/VLMEval/MMBench_DEV_CN.tsv
wget https://opencompass.openxlab.space/utils/VLMEval/MMBench_TEST_CN.tsv
wget https://opencompass.openxlab.space/utils/VLMEval/CCBench.tsv
Then run:
NPROC_PER_NODE=8 xtuner mmbench internlm/internlm2-chat-7b \
--visual-encoder facebook/dinov2-large \
--llava ./my_lora_and_projector \
--prompt-template internlm2_chat \
--data-path $MMBENCH_DATA_PATH \
--work-dir $RESULT_PATH
You can also use VLMEvalKit to evaluate it on other benckmarks.
Deployment
Xtuner team is developing HF chatbot (based on Huggingface transformers) and LMDeploy chatbot (based on TurboMind). I am waiting for their final version of API.