resnet-fine_tuned

This model is a fine-tuned version of microsoft/resnet-34 on the Falah/Alzheimer_MRI dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1983
  • Accuracy: 0.9219

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.9041 1.0 80 0.9659 0.5352
0.8743 2.0 160 0.9348 0.5797
0.7723 3.0 240 0.7793 0.6594
0.6864 4.0 320 0.6799 0.7031
0.5347 5.0 400 0.5596 0.7703
0.4282 6.0 480 0.5078 0.7766
0.4315 7.0 560 0.5455 0.7680
0.3747 8.0 640 0.4203 0.8266
0.2977 9.0 720 0.3926 0.8469
0.2252 10.0 800 0.3024 0.8742
0.2675 11.0 880 0.2731 0.8906
0.2136 12.0 960 0.3045 0.875
0.1998 13.0 1040 0.2370 0.9
0.2406 14.0 1120 0.2387 0.9086
0.1873 15.0 1200 0.1983 0.9219

Framework versions

  • Transformers 4.31.0
  • Pytorch 2.0.1+cpu
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
51
Safetensors
Model size
21.3M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Thamer/resnet-fine_tuned

Finetuned
(1)
this model

Dataset used to train Thamer/resnet-fine_tuned