|
--- |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
tags: |
|
- axolotl |
|
- dpo |
|
- trl |
|
- llama-cpp |
|
- gguf-my-repo |
|
base_model: HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407 |
|
datasets: |
|
- HumanLLMs/Human-Like-DPO-Dataset |
|
language: |
|
- en |
|
model-index: |
|
- name: Humanish-Mistral-Nemo-Instruct-2407 |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 54.51 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 32.71 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 7.63 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 5.03 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 9.4 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407 |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 28.01 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407 |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF |
|
This model was converted to GGUF format from [`HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407`](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) for more details on the model. |
|
|
|
--- |
|
Model details: |
|
- |
|
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407, specifically optimized to generate more human-like and conversational responses. |
|
|
|
The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions. |
|
|
|
The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”. |
|
|
|
🛠️ Training Configuration |
|
|
|
Base Model: Mistral-Nemo-Instruct-2407 |
|
Framework: Axolotl v0.4.1 |
|
Hardware: 2x NVIDIA A100 (80 GB) GPUs |
|
Training Time: ~3 hours 40 minutes |
|
Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics |
|
|
|
|
|
💬 Prompt Template |
|
|
|
You can use Mistral-Nemo prompt template while using the model: |
|
|
|
Mistral-Nemo |
|
|
|
<s>[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST] |
|
|
|
This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method: |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are helpful AI asistant."}, |
|
{"role": "user", "content": "Hello!"} |
|
] |
|
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt") |
|
model.generate(**gen_input) |
|
|
|
--- |
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -c 2048 |
|
``` |
|
|