Triangle104's picture
Update README.md
dc7a10c verified
---
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
tags:
- axolotl
- dpo
- trl
- llama-cpp
- gguf-my-repo
base_model: HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407
datasets:
- HumanLLMs/Human-Like-DPO-Dataset
language:
- en
model-index:
- name: Humanish-Mistral-Nemo-Instruct-2407
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 54.51
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.71
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 7.63
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 5.03
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 9.4
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.01
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=HumanLLMs/Humanish-Mistral-Nemo-Instruct-2407
name: Open LLM Leaderboard
---
# Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF
This model was converted to GGUF format from [`HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407`](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/HumanLLMs/Human-Like-Mistral-Nemo-Instruct-2407) for more details on the model.
---
Model details:
-
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407, specifically optimized to generate more human-like and conversational responses.
The fine-tuning process employed both Low-Rank Adaptation (LoRA) and Direct Preference Optimization (DPO) to enhance natural language understanding, conversational coherence, and emotional intelligence in interactions.
The proccess of creating this models is detailed in the research paper “Enhancing Human-Like Responses in Large Language Models”.
🛠️ Training Configuration
Base Model: Mistral-Nemo-Instruct-2407
Framework: Axolotl v0.4.1
Hardware: 2x NVIDIA A100 (80 GB) GPUs
Training Time: ~3 hours 40 minutes
Dataset: Synthetic dataset with ≈11,000 samples across 256 diverse topics
💬 Prompt Template
You can use Mistral-Nemo prompt template while using the model:
Mistral-Nemo
<s>[INST] Hello, how are you? [/INST]I'm doing great. How can I help you today?</s> [INST] I'd like to show off how chat templating works! [/INST]
This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:
messages = [
{"role": "system", "content": "You are helpful AI asistant."},
{"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)
---
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo Triangle104/Human-Like-Mistral-Nemo-Instruct-2407-Q6_K-GGUF --hf-file human-like-mistral-nemo-instruct-2407-q6_k.gguf -c 2048
```