image/png

❗⚠️ WARNING ⚠️❗

❗ This model has been deprecated due to a sliding window error in the base model's configuration. This issue has been resolved with the following commit in the base model, and upcoming versions of the Einstein series will utilize the correct configuration in the base model.


🔬 Einstein-v5-v0.2-7B

This model is a full fine-tuned version of alpindale/Mistral-7B-v0.2-hf on diverse datasets.

This model is finetuned using 8xRTX3090 + 1xRTXA6000 using axolotl.

This model's training was sponsored by sablo.ai.

See axolotl config

axolotl version: 0.4.0

base_model: alpindale/Mistral-7B-v0.2-hf
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

chat_template: chatml
datasets:
  - path: data/merged_all.json
    ds_type: json
    type: alpaca
    conversation: chatml

  - path: data/gpteacher-instruct-special-alpaca.json
    ds_type: json
    type: gpteacher
    conversation: chatml

  - path: data/capybara_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/synthia-v1.3_sharegpt_12500.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/cot_alpaca_gpt4_extracted_openhermes_2.5_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml

  - path: data/slimorca_dedup_filtered_95k_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/airoboros_3.2_without_contextual_slimorca_orca_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/allenai_wild_chat_gpt4_english_toxic_random_half_4k_sharegpt.json
    ds_type: json
    type: sharegpt
    strict: false
    conversation: chatml  

  - path: data/pippa_bagel_repo_3k_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/gpt4_data_lmys_1m_sharegpt.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

  - path: data/sharegpt_gpt4_english.json
    ds_type: json
    type: sharegpt
    conversation: chatml  

dataset_prepared_path: last_run_prepared
# val_set_size: 0.005
val_set_size: 0.0

do_bench_eval: true

output_dir: ./Einstein-v5-Mistral-v0.2-beta-model

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: Einstein
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/Einstein-v5-Mistral-v0.2-beta

save_safetensors: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 3 # changed
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 3 # changed
debug:

deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"

💬 Prompt Template

You can use this prompt template while using the model:

ChatML

<|im_start|>system
{system}<|im_end|>
<|im_start|>user
{user}<|im_end|>
<|im_start|>assistant
{asistant}<|im_end|>

This prompt template is available as a chat template, which means you can format messages using the tokenizer.apply_chat_template() method:

messages = [
    {"role": "system", "content": "You are helpful AI asistant."},
    {"role": "user", "content": "Hello!"}
]
gen_input = tokenizer.apply_chat_template(message, return_tensors="pt")
model.generate(**gen_input)

🔄 Quantizationed versions

Quantizationed versions of this model is available.

GGUF @bartowski

ExLlamaV2 @bartowski

🎯 Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 65.65
AI2 Reasoning Challenge (25-Shot) 60.92
HellaSwag (10-Shot) 80.99
MMLU (5-Shot) 61.02
TruthfulQA (0-shot) 52.59
Winogrande (5-shot) 78.69
GSM8k (5-shot) 59.67

🤖 Additional information about training

This model is full fine-tuned for 1 epoch.

Total number of steps was 1124.

Loss graph

image/png


🤝 Acknowledgments

Thanks to sablo.ai for sponsoring this model.

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to axolotl for making the repository I used to make this model.

Thanks to all open source AI community.

Built with Axolotl

If you would like to support me:

☕ Buy Me a Coffee

Downloads last month
16
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Weyaxi/Einstein-v5-v0.2-7B

Finetuned
(37)
this model
Merges
2 models
Quantizations
4 models

Datasets used to train Weyaxi/Einstein-v5-v0.2-7B

Collection including Weyaxi/Einstein-v5-v0.2-7B

Evaluation results