AIGCodeGeek-DS-6.7B

Introduction

AIGCodeGeek-DS-6.7B is our first released version of a Code-LLM family with competitive performance on public and private benchmarks.

Model Details

Model Description

Training data

A mixture of samples from high-quality open-source (read Acknowledgements) and our private datasets. We have made contamination detection as Magicoder/Bigcode did (https://github.com/ise-uiuc/magicoder/blob/main/src/magicoder/decontamination/find_substrings.py).

Evaluation

results to be added.

Requirements

It should work with the same requirements as DeepSeek-Coder-6.7B or the following packages:

tokenizers>=0.14.0
transformers>=4.35.0
accelerate
sympy>=1.12
pebble 
timeout-decorator 
attrdict

QuickStart

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
messages=[
    { 'role': 'user', 'content': "write a merge sort algorithm in python."}
]
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
# tokenizer.eos_token_id is the id of <|EOT|> token
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))

Acknowledgements

We gain a lot of knowledge and resources from the open-source community:

Downloads last month
21
Safetensors
Model size
6.74B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for aigcode/AIGCodeGeek-DS-6.7B

Quantizations
1 model

Datasets used to train aigcode/AIGCodeGeek-DS-6.7B