wav2vec2-large-xlsr-53-gender-recognition-librispeech
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on Librispeech-clean-100 for gender recognition. It achieves the following results on the evaluation set:
- Loss: 0.0061
- F1: 0.9993
Compute your inferences
import os
import random
from glob import glob
from typing import List, Optional, Union, Dict
import tqdm
import torch
import torchaudio
import numpy as np
import pandas as pd
from torch import nn
from torch.utils.data import DataLoader
from torch.nn import functional as F
from transformers import (
AutoFeatureExtractor,
AutoModelForAudioClassification,
Wav2Vec2Processor
)
class CustomDataset(torch.utils.data.Dataset):
def __init__(
self,
dataset: List,
basedir: Optional[str] = None,
sampling_rate: int = 16000,
max_audio_len: int = 5,
):
self.dataset = dataset
self.basedir = basedir
self.sampling_rate = sampling_rate
self.max_audio_len = max_audio_len
def __len__(self):
"""
Return the length of the dataset
"""
return len(self.dataset)
def __getitem__(self, index):
if self.basedir is None:
filepath = self.dataset[index]
else:
filepath = os.path.join(self.basedir, self.dataset[index])
speech_array, sr = torchaudio.load(filepath)
if speech_array.shape[0] > 1:
speech_array = torch.mean(speech_array, dim=0, keepdim=True)
if sr != self.sampling_rate:
transform = torchaudio.transforms.Resample(sr, self.sampling_rate)
speech_array = transform(speech_array)
sr = self.sampling_rate
len_audio = speech_array.shape[1]
# Pad or truncate the audio to match the desired length
if len_audio < self.max_audio_len * self.sampling_rate:
# Pad the audio if it's shorter than the desired length
padding = torch.zeros(1, self.max_audio_len * self.sampling_rate - len_audio)
speech_array = torch.cat([speech_array, padding], dim=1)
else:
# Truncate the audio if it's longer than the desired length
speech_array = speech_array[:, :self.max_audio_len * self.sampling_rate]
speech_array = speech_array.squeeze().numpy()
return {"input_values": speech_array, "attention_mask": None}
class CollateFunc:
def __init__(
self,
processor: Wav2Vec2Processor,
padding: Union[bool, str] = True,
pad_to_multiple_of: Optional[int] = None,
return_attention_mask: bool = True,
sampling_rate: int = 16000,
max_length: Optional[int] = None,
):
self.sampling_rate = sampling_rate
self.processor = processor
self.padding = padding
self.pad_to_multiple_of = pad_to_multiple_of
self.return_attention_mask = return_attention_mask
self.max_length = max_length
def __call__(self, batch: List[Dict[str, np.ndarray]]):
# Extract input_values from the batch
input_values = [item["input_values"] for item in batch]
batch = self.processor(
input_values,
sampling_rate=self.sampling_rate,
return_tensors="pt",
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_attention_mask=self.return_attention_mask
)
return {
"input_values": batch.input_values,
"attention_mask": batch.attention_mask if self.return_attention_mask else None
}
def predict(test_dataloader, model, device: torch.device):
"""
Predict the class of the audio
"""
model.to(device)
model.eval()
preds = []
with torch.no_grad():
for batch in tqdm.tqdm(test_dataloader):
input_values, attention_mask = batch['input_values'].to(device), batch['attention_mask'].to(device)
logits = model(input_values, attention_mask=attention_mask).logits
scores = F.softmax(logits, dim=-1)
pred = torch.argmax(scores, dim=1).cpu().detach().numpy()
preds.extend(pred)
return preds
def get_gender(model_name_or_path: str, audio_paths: List[str], label2id: Dict, id2label: Dict, device: torch.device):
num_labels = 2
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name_or_path)
model = AutoModelForAudioClassification.from_pretrained(
pretrained_model_name_or_path=model_name_or_path,
num_labels=num_labels,
label2id=label2id,
id2label=id2label,
)
test_dataset = CustomDataset(audio_paths, max_audio_len=5) # for 5-second audio
data_collator = CollateFunc(
processor=feature_extractor,
padding=True,
sampling_rate=16000,
)
test_dataloader = DataLoader(
dataset=test_dataset,
batch_size=16,
collate_fn=data_collator,
shuffle=False,
num_workers=2
)
preds = predict(test_dataloader=test_dataloader, model=model, device=device)
return preds
model_name_or_path = "alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech"
audio_paths = [] # Must be a list with absolute paths of the audios that will be used in inference
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
label2id = {
"female": 0,
"male": 1
}
id2label = {
0: "female",
1: "male"
}
num_labels = 2
preds = get_gender(model_name_or_path, audio_paths, label2id, id2label, device)
Training and evaluation data
The Librispeech-clean-100 dataset was used to train the model, with 70% of the data used for training, 10% for validation, and 20% for testing.
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 |
---|---|---|---|---|
0.002 | 1.0 | 1248 | 0.0061 | 0.9993 |
Framework versions
- Transformers 4.28.0
- Pytorch 2.0.0+cu118
- Tokenizers 0.13.3
- Downloads last month
- 1,460,944
Model tree for alefiury/wav2vec2-large-xlsr-53-gender-recognition-librispeech
Base model
facebook/wav2vec2-xls-r-300m