finetune-instance-segmentation-posture

This model is a fine-tuned version of facebook/mask2former-swin-tiny-coco-instance on the qubvel-hf/ade20k-mini dataset. It achieves the following results on the evaluation set:

  • Loss: 30.5625
  • Map: 0.2089
  • Map 50: 0.4081
  • Map 75: 0.1963
  • Map Small: 0.1412
  • Map Medium: 0.6277
  • Map Large: 0.8115
  • Mar 1: 0.0944
  • Mar 10: 0.25
  • Mar 100: 0.2879
  • Mar Small: 0.2137
  • Mar Medium: 0.7147
  • Mar Large: 0.8531
  • Map Person: 0.1381
  • Mar 100 Person: 0.2036
  • Map Car: 0.2797
  • Mar 100 Car: 0.3722

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 2.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Map Map 50 Map 75 Map Small Map Medium Map Large Mar 1 Mar 10 Mar 100 Mar Small Mar Medium Mar Large Map Person Mar 100 Person Map Car Mar 100 Car
34.1337 1.0 100 32.3431 0.1958 0.3913 0.181 0.1319 0.6051 0.7775 0.0924 0.2465 0.2845 0.2104 0.7094 0.8587 0.1243 0.2001 0.2673 0.3689
28.4514 2.0 200 30.5625 0.2089 0.4081 0.1963 0.1412 0.6277 0.8115 0.0944 0.25 0.2879 0.2137 0.7147 0.8531 0.1381 0.2036 0.2797 0.3722

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.2
  • Tokenizers 0.20.1
Downloads last month
20
Safetensors
Model size
47.4M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for amnraw/finetune-instance-segmentation-posture

Finetuned
(3)
this model