metadata
base_model: nisten/Biggie-SmoLlm-0.15B-Base
license: mit
datasets:
- LDJnr/Capybara
- andthattoo/subqueries
pipeline_tag: text-generation
tags:
- llama
Fine-tuned Biggie-SmoLlm-0.15B-Base for generating subqueries
This dude is trained for boosting the performance of your RAG based question answering app
My motivation was to tackle a core problem of RAG with an extremely lightweight, but capable model.
If queries are
- multi-hop logic, break into simpler subqueries that focuses on a different step
- vague, ask follow up questions
- multiple sub questions, generate multiple queries for each of them
Training data was generated with Dria: A decentralized p2p network for synthetic data. Join discord to help decentralized data generation.
Heads up: Ollama version works 160 tps on 1 CPU core. No GPU? No worries. This little dude’s got you.
Use the model:
from transformers import AutoModel, AutoConfig, AutoTokenizer, AutoModelForCausalLM
config = AutoConfig.from_pretrained("andthattoo/subquery-SmolLM")
tokenizer = AutoTokenizer.from_pretrained("andthattoo/subquery-SmolLM")
model = AutoModelForCausalLM.from_pretrained("andthattoo/subquery-SmolLM", torch_dtype=torch.bfloat16)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = model.config.eos_token_id
input_data = "Generate subqueries for a given question. <question>What is this?</question>"
inputs = tokenizer(input_data, return_tensors='pt')
output = model.generate(**inputs, max_new_tokens=100)
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True)
Also created a python package for ease of use
pip install subquery
from subquery import TransformersSubqueryGenerator
# Using the Transformers backend
generator = TransformersSubqueryGenerator()
result = generator.generate("What is this?")
print("Follow-up questions:", result.follow_up)
print("Subqueries:", result.subquery)
or
from subquery import OllamaSubqueryGenerator
# Using the Ollama backend
generator = OllamaSubqueryGenerator()
result = generator.generate("Are the Indiana Harbor and Ship Canal and the Folsom South Canal in the same state?")
print("Follow-up questions:", result.follow_up)
print("Subqueries:", result.subquery)