segformer-v1-breastcancer

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2084
  • Mean Iou: 0.6074
  • Mean Accuracy: 0.7133
  • Overall Accuracy: 0.6718
  • Per Category Iou: [0.6503515075769412, 0.5644565972298056]
  • Per Category Accuracy: [0.7843872475128127, 0.6421245639664888]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
1.0349 1.82 20 0.9385 0.1001 0.3453 0.5410 [0.00702490904002239, 0.19315512632820392] [0.00945884835694905, 0.6811663337407948]
0.8631 3.64 40 0.8712 0.1270 0.3748 0.5931 [9.482867619168036e-05, 0.25396146547703435] [0.00011305396442568585, 0.7494807350208202]
0.6657 5.45 60 0.6510 0.1313 0.2115 0.3347 [0.00014806040864672785, 0.26239433754030744] [0.00015073861923424781, 0.42294505232402135]
0.6924 7.27 80 0.5721 0.1917 0.3061 0.4833 [0.002107933665379521, 0.38125252274350296] [0.0021291829966837506, 0.6101487731433172]
0.5177 9.09 100 0.4836 0.1991 0.3081 0.4876 [0.0, 0.3981538560328774] [0.0, 0.6162060363932699]
0.3851 10.91 120 0.4029 0.2127 0.2893 0.4440 [0.023690796530116853, 0.40166184061437743] [0.02372249020198975, 0.5548632022499826]
0.3266 12.73 140 0.3811 0.2300 0.3350 0.5130 [0.028268806709322924, 0.43178856750464767] [0.02946940006029545, 0.6405295012074774]
0.3397 14.55 160 0.3353 0.2616 0.3719 0.5640 [0.04190433583118965, 0.4812188969936601] [0.042357552004823634, 0.7015294713932202]
0.3008 16.36 180 0.3363 0.3885 0.4376 0.4135 [0.4227194892852987, 0.35420100310527275] [0.47910385890865237, 0.3961867565069616]
0.2558 18.18 200 0.3163 0.4200 0.4832 0.4322 [0.48242302607476784, 0.35761699452079404] [0.570677570093458, 0.3956699760492134]
0.2686 20.0 220 0.2771 0.4777 0.5444 0.5868 [0.4603203796001692, 0.49515000498355427] [0.4716046126017486, 0.6171352474086441]
0.1953 21.82 240 0.2811 0.4756 0.5676 0.5920 [0.46844517569632155, 0.4827354154204578] [0.5257386192342478, 0.6095276427854467]
0.1623 23.64 260 0.2612 0.4833 0.5416 0.5447 [0.506478482184174, 0.46020570281796136] [0.5361961109436237, 0.5469524860121443]
0.1851 25.45 280 0.2620 0.5107 0.5880 0.5313 [0.5881106780729983, 0.4333538137452822] [0.6852389207114863, 0.49066316846049113]
0.1315 27.27 300 0.2230 0.6652 0.7361 0.6967 [0.7577948727059535, 0.5726185409040606] [0.8037006331022007, 0.6684903053973743]
0.1294 29.09 320 0.2330 0.5189 0.6179 0.6328 [0.506419446816051, 0.5313992809888866] [0.5923462466083811, 0.6434165151108594]
0.1532 30.91 340 0.2326 0.5319 0.6251 0.6503 [0.5461152173144251, 0.5176845532961513] [0.581945281881218, 0.6683163888971706]
0.1074 32.73 360 0.2280 0.5790 0.6418 0.5960 [0.6624514966740577, 0.4955288623414331] [0.7205682845945132, 0.5631018753167765]
0.1184 34.55 380 0.2168 0.6385 0.7453 0.7145 [0.7140882114917724, 0.5629577265658137] [0.7980479348809165, 0.6925007205112151]
0.1411 36.36 400 0.2191 0.5935 0.6776 0.6459 [0.6633485862587079, 0.5236754959973609] [0.7320432619837203, 0.6231328821442413]
0.1224 38.18 420 0.2068 0.6114 0.6869 0.6689 [0.6632029659025639, 0.5596692813228747] [0.717949201085318, 0.6559037198254872]
0.0892 40.0 440 0.2096 0.5867 0.6817 0.6756 [0.6250170137471076, 0.548339821945447] [0.692191739523666, 0.6711785575862378]
0.103 41.82 460 0.2117 0.5693 0.6553 0.6511 [0.6029494984137872, 0.5356447598629901] [0.6625150738619234, 0.6480725082734564]
0.0996 43.64 480 0.2082 0.6011 0.7024 0.6743 [0.6408627400521119, 0.5614076241331366] [0.7507725354235755, 0.6540800810947796]
0.1095 45.45 500 0.2065 0.6254 0.7302 0.6836 [0.6779631615467104, 0.5728211009174312] [0.8100504974374435, 0.6502936704332012]
0.097 47.27 520 0.2083 0.6079 0.7042 0.6628 [0.6564823383005202, 0.5592888498683055] [0.7753052457039493, 0.6330858749987578]
0.0866 49.09 540 0.2084 0.6074 0.7133 0.6718 [0.6503515075769412, 0.5644565972298056] [0.7843872475128127, 0.6421245639664888]

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
25
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for as-cle-bert/segformer-v1-breastcancer

Finetuned
(3)
this model

Dataset used to train as-cle-bert/segformer-v1-breastcancer