SDXL LoRA DreamBooth - backnotprop/np_cr_model4

Prompt
spiral wave flower,minimalism,white_background,abstract,photoshop generated abstract on a white background
Prompt
spiral wave flower,minimalism,white_background,abstract,photoshop generated abstract on a white background
Prompt
spiral wave flower,minimalism,white_background,abstract,photoshop generated abstract on a white background
Prompt
spiral wave flower,minimalism,white_background,abstract,photoshop generated abstract on a white background

Model description

These are backnotprop/np_cr_model4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.

Download model

Use it with UIs such as AUTOMATIC1111, Comfy UI, SD.Next, Invoke

  • LoRA: download np_cr_model4.safetensors here 💾.
    • Place it on your models/Lora folder.
    • On AUTOMATIC1111, load the LoRA by adding <lora:np_cr_model4:1> to your prompt. On ComfyUI just load it as a regular LoRA.
  • Embeddings: download np_cr_model4_emb.safetensors here 💾.
    • Place it on it on your embeddings folder
    • Use it by adding np_cr_model4_emb to your prompt. For example, something,minimalism,white_background,abstract,photoshop generated abstract on a white background (you need both the LoRA and the embeddings as they were trained together for this LoRA)

Use it with the 🧨 diffusers library

from diffusers import AutoPipelineForText2Image
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
        
pipeline = AutoPipelineForText2Image.from_pretrained('stabilityai/stable-diffusion-xl-base-1.0', torch_dtype=torch.float16).to('cuda')
pipeline.load_lora_weights('backnotprop/np_cr_model4', weight_name='pytorch_lora_weights.safetensors')
embedding_path = hf_hub_download(repo_id='backnotprop/np_cr_model4', filename='np_cr_model4_emb.safetensors' repo_type="model")
state_dict = load_file(embedding_path)
pipeline.load_textual_inversion(state_dict["clip_l"], token=[], text_encoder=pipeline.text_encoder, tokenizer=pipeline.tokenizer)
pipeline.load_textual_inversion(state_dict["clip_g"], token=[], text_encoder=pipeline.text_encoder_2, tokenizer=pipeline.tokenizer_2)
        
image = pipeline('spiral wave flower,minimalism,white_background,abstract,photoshop generated abstract on a white background').images[0]

For more details, including weighting, merging and fusing LoRAs, check the documentation on loading LoRAs in diffusers

Trigger words

To trigger image generation of trained concept(or concepts) replace each concept identifier in you prompt with the new inserted tokens:

to trigger concept TOK → use <s0><s1> in your prompt

Details

All Files & versions.

The weights were trained using 🧨 diffusers Advanced Dreambooth Training Script.

LoRA for the text encoder was enabled. False.

Pivotal tuning was enabled: True.

Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.

Downloads last month
7
Inference API
Examples

Model tree for backnotprop/np_cr_model4

Adapter
(5153)
this model

Space using backnotprop/np_cr_model4 1