Whisper Small PL

This model is a fine-tuned version of openai/whisper-medium on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3739
  • Wer: 8.5898

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0474 1.1 1000 0.2561 9.4612
0.0119 3.09 2000 0.2901 8.9726
0.0045 5.08 3000 0.3151 8.8870
0.0007 7.07 4000 0.4218 8.6032
0.0005 9.07 5000 0.3739 8.5898

Evaluation results

When tested on diffrent polish ASR datasets (splits: test), this model achieves the following results:

Dataset WER WER unnormalized CER MER
common_voice_11_0 8.85 21.75 2.63 8.76

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
33
Safetensors
Model size
764M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for bardsai/whisper-medium-pl

Finetuned
(543)
this model

Dataset used to train bardsai/whisper-medium-pl

Collection including bardsai/whisper-medium-pl

Evaluation results