Vigogne

Vigogne-2-70B-Chat: A Llama-2-based French Chat LLM

Vigogne-2-70B-Chat is a French chat LLM, based on Llama-2-70B, optimized to generate helpful and coherent responses in conversations with users.

Check out our release blog and GitHub repository for more information.

Usage and License Notices: Vigogne-2-70B-Chat follows Llama-2's usage policy. A significant portion of the training data is distilled from GPT-3.5-Turbo and GPT-4, kindly use it cautiously to avoid any violations of OpenAI's terms of use.

Prompt Template

We used a prompt template adapted from the chat format of Llama-2.

You can apply this formatting using the chat template through the apply_chat_template() method.

from transformers import AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("bofenghuang/vigogne-2-70b-chat")

conversation = [
    {"role": "user", "content": "Bonjour ! Comment ça va aujourd'hui ?"},
    {"role": "assistant", "content": "Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ?"},
    {"role": "user", "content": "Quelle est la hauteur de la Tour Eiffel ?"},
    {"role": "assistant", "content": "La Tour Eiffel mesure environ 330 mètres de hauteur."},
    {"role": "user", "content": "Comment monter en haut ?"},
]

print(tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True))

You will get

<s>[INST] <<SYS>>
Vous êtes Vigogne, un assistant IA créé par Zaion Lab. Vous suivez extrêmement bien les instructions. Aidez autant que vous le pouvez.
<</SYS>>

Bonjour ! Comment ça va aujourd'hui ? [/INST] Bonjour ! Je suis une IA, donc je n'ai pas de sentiments, mais je suis prêt à vous aider. Comment puis-je vous assister aujourd'hui ? </s>[INST] Quelle est la hauteur de la Tour Eiffel ? [/INST] La Tour Eiffel mesure environ 330 mètres de hauteur. </s>[INST] Comment monter en haut ? [/INST]

Usage

Inference using the unquantized model with 🤗 Transformers

from typing import Dict, List, Optional
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, TextStreamer

model_name_or_path = "bofenghuang/vigogne-2-70b-chat"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side="right", use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, torch_dtype=torch.float16, device_map="auto")

streamer = TextStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)


def chat(
    query: str,
    history: Optional[List[Dict]] = None,
    temperature: float = 0.7,
    top_p: float = 1.0,
    top_k: float = 0,
    repetition_penalty: float = 1.1,
    max_new_tokens: int = 1024,
    **kwargs,
):
    if history is None:
        history = []

    history.append({"role": "user", "content": query})

    input_ids = tokenizer.apply_chat_template(history, return_tensors="pt").to(model.device)
    input_length = input_ids.shape[1]

    generated_outputs = model.generate(
        input_ids=input_ids,
        generation_config=GenerationConfig(
            temperature=temperature,
            do_sample=temperature > 0.0,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            max_new_tokens=max_new_tokens,
            pad_token_id=tokenizer.eos_token_id,
            **kwargs,
        ),
        streamer=streamer,
        return_dict_in_generate=True,
    )

    generated_tokens = generated_outputs.sequences[0, input_length:]
    generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True)

    history.append({"role": "assistant", "content": generated_text})

    return generated_text, history


# 1st round
response, history = chat("Un escargot parcourt 100 mètres en 5 heures. Quelle est sa vitesse ?", history=None)

# 2nd round
response, history = chat("Quand il peut dépasser le lapin ?", history=history)

# 3rd round
response, history = chat("Écris une histoire imaginative qui met en scène une compétition de course entre un escargot et un lapin.", history=history)

You can also use the Google Colab Notebook provided below.

Open In Colab

Limitations

Vigogne is still under development, and there are many limitations that have to be addressed. Please note that it is possible that the model generates harmful or biased content, incorrect information or generally unhelpful answers.

Acknowledgements

The model training was conducted on the Jean-Zay supercomputer at GENCI, and we extend our gratitude to the IDRIS team for their responsive support throughout the project.

Downloads last month
723
Inference Examples
Inference API (serverless) has been turned off for this model.

Model tree for bofenghuang/vigogne-2-70b-chat

Finetunes
2 models
Quantizations
3 models

Collection including bofenghuang/vigogne-2-70b-chat