Indonesian BERT base model (uncased)
Model description
It is BERT-base model pre-trained with indonesian Wikipedia and indonesian newspapers using a masked language modeling (MLM) objective. This model is uncased.
This is one of several other language models that have been pre-trained with indonesian datasets. More detail about its usage on downstream tasks (text classification, text generation, etc) is available at Transformer based Indonesian Language Models
Intended uses & limitations
How to use
You can use this model directly with a pipeline for masked language modeling:
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='cahya/bert-base-indonesian-1.5G')
>>> unmasker("Ibu ku sedang bekerja [MASK] supermarket")
[{'sequence': '[CLS] ibu ku sedang bekerja di supermarket [SEP]',
'score': 0.7983310222625732,
'token': 1495},
{'sequence': '[CLS] ibu ku sedang bekerja. supermarket [SEP]',
'score': 0.090003103017807,
'token': 17},
{'sequence': '[CLS] ibu ku sedang bekerja sebagai supermarket [SEP]',
'score': 0.025469014421105385,
'token': 1600},
{'sequence': '[CLS] ibu ku sedang bekerja dengan supermarket [SEP]',
'score': 0.017966199666261673,
'token': 1555},
{'sequence': '[CLS] ibu ku sedang bekerja untuk supermarket [SEP]',
'score': 0.016971781849861145,
'token': 1572}]
Here is how to use this model to get the features of a given text in PyTorch:
from transformers import BertTokenizer, BertModel
model_name='cahya/bert-base-indonesian-1.5G'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
and in Tensorflow:
from transformers import BertTokenizer, TFBertModel
model_name='cahya/bert-base-indonesian-1.5G'
tokenizer = BertTokenizer.from_pretrained(model_name)
model = TFBertModel.from_pretrained(model_name)
text = "Silakan diganti dengan text apa saja."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
Training data
This model was pre-trained with 522MB of indonesian Wikipedia and 1GB of indonesian newspapers. The texts are lowercased and tokenized using WordPiece and a vocabulary size of 32,000. The inputs of the model are then of the form:
[CLS] Sentence A [SEP] Sentence B [SEP]
- Downloads last month
- 87,303