Overview
This model was fine-tuned from ModernBERT-base on the GoEmotions dataset for multi-label classification. It predicts emotional states in text, with a total of 28 possible labels. Each input text can have one or more associated labels, reflecting the multi-label nature of the task.
Try it out here.
Model Details
- Base Model: ModernBERT-base
- Fine-Tuning Dataset: GoEmotions
- Number of Labels: 28
- Problem Type: Multi-label classification
- Language: English
- License: MIT
- Fine-Tuning Framework: Hugging Face Transformers
Example Usage
Here’s how to use the model with Hugging Face Transformers:
from transformers import pipeline
import torch
# Load the model
classifier = pipeline(
"text-classification",
model="cirimus/modernbert-base-go-emotions",
return_all_scores=True
)
text = "I am so happy and excited about this opportunity!"
predictions = classifier(text)
# Print top 5 detected emotions
sorted_preds = sorted(predictions[0], key=lambda x: x['score'], reverse=True)
top_5 = sorted_preds[:5]
print("\nTop 5 emotions detected:")
for pred in top_5:
print(f"{pred['label']}: {pred['score']:.3f}")
# Example output:
# Top 5 emotions detected:
# excitement: 0.937
# joy: 0.915
# desire: 0.022
# love: 0.020
# admiration: 0.017
How the Model Was Created
The model was fine-tuned for 3 epochs using the following hyperparameters:
- Learning Rate:
2e-5
- Batch Size: 16
- Weight Decay:
0.01
- Warmup Steps: 500
- Optimizer: AdamW
- Evaluation Metrics: Precision, Recall, F1 Score (weighted), Accuracy
Dataset
The GoEmotions dataset is a multi-label emotion classification dataset derived from Reddit comments. It contains 58,000 examples with 28 emotion labels (e.g., admiration, amusement, anger, etc.), and it is annotated for multi-label classification.
Evaluation Results
The model was evaluated on the test split of the GoEmotions dataset, using a threshold of 0.5
for binarizing predictions. The overall metrics were:
Standard Results:
Using the default threshold of 0.5.
Macro Averages (test)
- Accuracy:
0.970
- Precision:
0.665
- Recall:
0.389
- F1:
0.465
- MCC:
0.477
Per-Label Results (test)
Label | Accuracy | Precision | Recall | F1 | MCC | Support | Threshold |
---|---|---|---|---|---|---|---|
admiration | 0.945 | 0.737 | 0.627 | 0.677 | 0.650 | 504 | 0.5 |
amusement | 0.980 | 0.794 | 0.803 | 0.798 | 0.788 | 264 | 0.5 |
anger | 0.968 | 0.680 | 0.258 | 0.374 | 0.406 | 198 | 0.5 |
annoyance | 0.940 | 0.468 | 0.159 | 0.238 | 0.249 | 320 | 0.5 |
approval | 0.942 | 0.614 | 0.276 | 0.381 | 0.387 | 351 | 0.5 |
caring | 0.976 | 0.524 | 0.244 | 0.333 | 0.347 | 135 | 0.5 |
confusion | 0.975 | 0.625 | 0.294 | 0.400 | 0.418 | 153 | 0.5 |
curiosity | 0.951 | 0.538 | 0.423 | 0.473 | 0.452 | 284 | 0.5 |
desire | 0.987 | 0.604 | 0.349 | 0.443 | 0.453 | 83 | 0.5 |
disappointment | 0.974 | 0.656 | 0.139 | 0.230 | 0.294 | 151 | 0.5 |
disapproval | 0.950 | 0.494 | 0.292 | 0.367 | 0.356 | 267 | 0.5 |
disgust | 0.980 | 0.674 | 0.252 | 0.367 | 0.405 | 123 | 0.5 |
embarrassment | 0.995 | 0.857 | 0.324 | 0.471 | 0.526 | 37 | 0.5 |
excitement | 0.984 | 0.692 | 0.262 | 0.380 | 0.420 | 103 | 0.5 |
fear | 0.992 | 0.796 | 0.551 | 0.652 | 0.659 | 78 | 0.5 |
gratitude | 0.990 | 0.957 | 0.892 | 0.924 | 0.919 | 352 | 0.5 |
grief | 0.999 | 0.000 | 0.000 | 0.000 | 0.000 | 6 | 0.5 |
joy | 0.978 | 0.652 | 0.571 | 0.609 | 0.600 | 161 | 0.5 |
love | 0.982 | 0.792 | 0.798 | 0.795 | 0.786 | 238 | 0.5 |
nervousness | 0.996 | 0.636 | 0.304 | 0.412 | 0.439 | 23 | 0.5 |
optimism | 0.975 | 0.743 | 0.403 | 0.523 | 0.536 | 186 | 0.5 |
pride | 0.998 | 0.857 | 0.375 | 0.522 | 0.566 | 16 | 0.5 |
realization | 0.973 | 0.514 | 0.124 | 0.200 | 0.244 | 145 | 0.5 |
relief | 0.998 | 1.000 | 0.091 | 0.167 | 0.301 | 11 | 0.5 |
remorse | 0.992 | 0.594 | 0.732 | 0.656 | 0.656 | 56 | 0.5 |
sadness | 0.979 | 0.759 | 0.385 | 0.511 | 0.532 | 156 | 0.5 |
surprise | 0.978 | 0.649 | 0.340 | 0.447 | 0.460 | 141 | 0.5 |
neutral | 0.794 | 0.715 | 0.623 | 0.666 | 0.520 | 1787 | 0.5 |
Optimal Results:
Using the best threshold for each label based on the training set (tuned on F1).
Macro Averages (test)
- Accuracy:
0.967
- Precision:
0.568
- Recall:
0.531
- F1:
0.541
- MCC:
0.526
Per-Label Results (test)
Label | Accuracy | Precision | Recall | F1 | MCC | Support | Threshold |
---|---|---|---|---|---|---|---|
admiration | 0.946 | 0.700 | 0.726 | 0.713 | 0.683 | 504 | 0.30 |
amusement | 0.981 | 0.782 | 0.856 | 0.817 | 0.808 | 264 | 0.40 |
anger | 0.963 | 0.490 | 0.510 | 0.500 | 0.481 | 198 | 0.20 |
annoyance | 0.917 | 0.337 | 0.425 | 0.376 | 0.334 | 320 | 0.25 |
approval | 0.922 | 0.411 | 0.473 | 0.440 | 0.399 | 351 | 0.25 |
caring | 0.971 | 0.424 | 0.415 | 0.419 | 0.405 | 135 | 0.25 |
confusion | 0.970 | 0.468 | 0.484 | 0.476 | 0.460 | 153 | 0.30 |
curiosity | 0.947 | 0.493 | 0.630 | 0.553 | 0.530 | 284 | 0.35 |
desire | 0.988 | 0.708 | 0.410 | 0.519 | 0.533 | 83 | 0.45 |
disappointment | 0.963 | 0.321 | 0.291 | 0.306 | 0.287 | 151 | 0.25 |
disapproval | 0.943 | 0.429 | 0.464 | 0.446 | 0.417 | 267 | 0.30 |
disgust | 0.981 | 0.604 | 0.496 | 0.545 | 0.538 | 123 | 0.20 |
embarrassment | 0.995 | 0.789 | 0.405 | 0.536 | 0.564 | 37 | 0.30 |
excitement | 0.979 | 0.444 | 0.388 | 0.415 | 0.405 | 103 | 0.25 |
fear | 0.991 | 0.693 | 0.667 | 0.680 | 0.675 | 78 | 0.30 |
gratitude | 0.990 | 0.951 | 0.886 | 0.918 | 0.913 | 352 | 0.50 |
grief | 0.999 | 0.500 | 0.500 | 0.500 | 0.499 | 6 | 0.20 |
joy | 0.978 | 0.628 | 0.609 | 0.618 | 0.607 | 161 | 0.40 |
love | 0.982 | 0.789 | 0.819 | 0.804 | 0.795 | 238 | 0.45 |
nervousness | 0.995 | 0.375 | 0.391 | 0.383 | 0.380 | 23 | 0.25 |
optimism | 0.970 | 0.558 | 0.597 | 0.577 | 0.561 | 186 | 0.15 |
pride | 0.998 | 0.750 | 0.375 | 0.500 | 0.529 | 16 | 0.15 |
realization | 0.968 | 0.326 | 0.200 | 0.248 | 0.240 | 145 | 0.25 |
relief | 0.998 | 0.429 | 0.273 | 0.333 | 0.341 | 11 | 0.25 |
remorse | 0.993 | 0.611 | 0.786 | 0.688 | 0.689 | 56 | 0.55 |
sadness | 0.979 | 0.667 | 0.538 | 0.596 | 0.589 | 156 | 0.20 |
surprise | 0.978 | 0.585 | 0.511 | 0.545 | 0.535 | 141 | 0.30 |
neutral | 0.782 | 0.649 | 0.737 | 0.690 | 0.526 | 1787 | 0.40 |
Intended Use
The model is designed for emotion classification in English-language text, particularly in domains such as:
- Social media sentiment analysis
- Customer feedback evaluation
- Behavioral or psychological research
Limitations and Biases
- Data Bias: The dataset is based on Reddit comments, which may not generalize well to other domains or cultural contexts.
- Underrepresented Classes: Certain labels like "grief" and "relief" have very few examples, leading to lower performance for those classes.
- Ambiguity: Some training data contain annotation inconsistencies or ambiguities that may impact predictions.
Environmental Impact
- Hardware Used: NVIDIA RTX4090
- Training Time: <1 hour
- Carbon Emissions: ~0.04 kg CO2 (calculated via ML CO2 Impact Calculator).
Citation
If you use this model, please cite it as follows:
@inproceedings{JdFE2025b,
title = {Emotion Classification with ModernBERT},
author = {Enric Junqu\'e de Fortuny},
year = {2025},
howpublished = {\url{https://huggingface.co/cirimus/modernbert-base-go-emotions}},
}
- Downloads last month
- 23
Model tree for cirimus/modernbert-base-go-emotions
Base model
answerdotai/ModernBERT-base