This is the cointegrated/rubert-tiny model fine-tuned for classification of sentiment for short Russian texts.
The problem is formulated as multiclass classification: negative
vs neutral
vs positive
.
Usage
The function below estimates the sentiment of the given text:
# !pip install transformers sentencepiece --quiet
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
model_checkpoint = 'cointegrated/rubert-tiny-sentiment-balanced'
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint)
if torch.cuda.is_available():
model.cuda()
def get_sentiment(text, return_type='label'):
""" Calculate sentiment of a text. `return_type` can be 'label', 'score' or 'proba' """
with torch.no_grad():
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True).to(model.device)
proba = torch.sigmoid(model(**inputs).logits).cpu().numpy()[0]
if return_type == 'label':
return model.config.id2label[proba.argmax()]
elif return_type == 'score':
return proba.dot([-1, 0, 1])
return proba
text = 'Какая гадость эта ваша заливная рыба!'
# classify the text
print(get_sentiment(text, 'label')) # negative
# score the text on the scale from -1 (very negative) to +1 (very positive)
print(get_sentiment(text, 'score')) # -0.5894946306943893
# calculate probabilities of all labels
print(get_sentiment(text, 'proba')) # [0.7870447 0.4947824 0.19755007]
Training
We trained the model on the datasets collected by Smetanin. We have converted all training data into a 3-class format and have up- and downsampled the training data to balance both the sources and the classes. The training code is available as a Colab notebook. The metrics on the balanced test set are the following:
Source | Macro F1 |
---|---|
SentiRuEval2016_banks | 0.83 |
SentiRuEval2016_tele | 0.74 |
kaggle_news | 0.66 |
linis | 0.50 |
mokoron | 0.98 |
rureviews | 0.72 |
rusentiment | 0.67 |
- Downloads last month
- 202,974