camembert-fr-covid-tweet-sentiment-classification

This model is a fine-tune checkpoint of Yanzhu/bertweetfr-base, fine-tuned on SST-2. This model reaches an accuracy of 71% on the dev set. In this dataset, given a tweet, the goal was to infer the underlying topic of the tweet by choosing from four topics classes:

  • 0 : negatif
  • 1 : neutre
  • 2 : positif

Pipelining the Model

from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline

tokenizer = AutoTokenizer.from_pretrained("data354/camembert-fr-covid-tweet-sentiment-classification")
model = AutoModelForSequenceClassification.from_pretrained("data354/camembert-fr-covid-tweet-sentiment-classification")

nlp_topic_classif = transformers.pipeline('topics-classification', model = model, tokenizer = tokenizer)
nlp_topic_classif("tchai on est morts. on va se faire vacciner et ils vont contrôler comme les marionnettes avec des fils. d'après les '' ont dit ''...")

# Output: [{'label': 'opinions', 'score': 0.831]
Downloads last month
283
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for data354/camembert-fr-covid-tweet-sentiment-classification

Finetunes
1 model