Search is not available for this dataset
__key__
stringlengths
11
20
__url__
stringclasses
2 values
img.tif
imagewidth (px)
1.02k
1.02k
seg.tif
imagewidth (px)
1.02k
1.02k
mussels_0877_19_21
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_10_20
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_40_39
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0991_13_10
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_GER_11_19
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0865_12_22
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0354_2_4
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_21_11
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0629_19_14
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_46_28
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0877_18_19
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_40_32
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0756_10_12
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0856_15_13
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0351_2_4
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0865_12_14
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_24_04
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_40_07
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0380_03_12
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BUC_12_04
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1119_30_32
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0754_08_10
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BUC_05_06
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0877_22_03
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_02_15
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_05_12
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_34_08
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1001_18_34
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_24_05
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_37_02
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1119_29_31
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0752_19_03
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0636_08_11
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0630_7_3
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1119_13_32
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_47_19
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1119_26_14
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0991_08_07
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_24_22
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_40_05
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1001_29_32
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_41_24
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_49_22
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
U0540_87_1_3
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1001_28_33
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_28_19
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_36_08
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_24_11
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0380_11_10
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0754_05_04
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0847_18_23
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0877_29_08
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_23_22
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_34_10
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BUC_04_05
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0753_02_07
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0752_26_11
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0847_03_20
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_21_08
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0629_20_19
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0636_03_07
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0856_15_09
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_24_12
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_31_16
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_43_24
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1119_14_33
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_13_20
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0351_1_1
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_18_04
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_46_25
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_44_15
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0752_16_19
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_47_22
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BUC_21_08
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_15_17
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BUC_18_10
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_1119_02_37
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0756_16_10
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0865_15_15
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_38_26
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_03_11
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_11_12
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0865_15_11
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0991_14_19
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_33_09
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0865_14_15
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_45_32
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_36_22
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_45_27
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0856_13_03
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
U0426_92_5_1
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0991_17_13
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0847_13_22
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_37_15
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0847_07_24
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BOB_30_18
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_20_17
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_22_12
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
mussels_0752_17_17
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar
california_BML_47_11
hf://datasets/HakaiInstitute/mussel-seg-1024-1024@3ff2914bfff5c788d48748e5f03a55044a1062dc/train/000000.tar

MusselSeg: Semantic Segmentation for Rocky Intertidal Mussel Habitat

Dataset description

MusselSeg is a large-scale dataset for semantic segmentation of mussel habitat using high resolution drone imagery. It covers coastal mussel habitat located on the central coast of British Columbia, Canada, as well as areas in California, USA and provides pixel-wise annotation for mussel beds.

  • Source: Imagery collected by the Hakai Institute and University of California Santa Cruz
  • Geographic Coverage: ~3500m2
  • Time Period: 2021-2023

Task description

The dataset is designed for semantic segmentation of mussel habitat in aerial imagery. The task involves assigning each pixel in the image to either the "mussel" class or "background" (i.e. not mussels) class.

Usage

Download and iterate

Install the HuggingFace datasets library (instructions)

from datasets import load_dataset

train_dataset = load_dataset("HakaiInstitute/mussel-seg-1024-1024", split="train")
val_dataset = load_dataset("HakaiInstitute/mussel-seg-1024-1024", split="validation")
test_dataset  = load_dataset("HakaiInstitute/mussel-seg-1024-1024", split="test")

for sample in train_dataset:
    x = sample["img.tif"]
    y = sample["seg.tif"]
    # x and y are `PIL.Image` instances, ready to feed into a training loop, PyTorch dataloader, etc.

    # ...

Streaming from HuggingFace

This data is released as a WebDatasets, which makes it possible to use the data without downloading it in advance. For instructions on how to do this, please see WebDataset

Data characteristics

  • Image Format: GeoTiff
  • Resolution: mean=0.45cm, stdev=0.20cm
  • Tile Size: 1024x1024 pixels with 50% overlap
  • Number of Tiles: 9972 image and label pairs
  • Total Dataset Size: 42G

Annotation details

  • Method: Manual heads-up digitizing with manual verification
  • Format: Pixel-wise labels stored as separate mask images
  • Labelling Convention: Each pixel assigned a single class label

Class distribution

Class ID Class Name Description Percentage
0 Background Unclassified areas 87%
1 Mussels Mussel bed 13%

Split information

Split Data Percentage Tiles Count Mussel Pixels
Train 48% 4834 18.4%
Validation 13% 1277 16.7%
Test 39% 3861 4.3%

Train and Validation split tiles all contain at least 1 pixel in each class. For the Test split, some tiles are entirely the background class. If ignoring the test split tiles which contain only background pixels, the split percentages instead become 70/17/13 for the train/validation/test splits, respectively.

Splits are created such that tiles from the same source orthomosaic image are not divided across different splits. That is, all tiles from the same drone flight are present only in a single split.

Preprocessing

  1. Orthorectification applied to raw imagery
  2. Tiles extracted with 50% overlap
  3. Tiles with no mussels present eliminated for the Train and Validation splits

Licensing information

This dataset is released under the Creative Commons Attribution 4.0 License (CC BY 4.0).

Ethical considerations

  • No identifiable individuals are present in imagery
  • Minimized impact on wildlife and sensitive habitats
  • Engaged with local First Nations in planning aerial surveys

Citation information

If you use this dataset in your research, please cite:

@misc{denouden2024musselseg,
  author = {Denouden, Taylor and McInnes, William and Ammann, Karah and Fletcher, Nathaniel},
  title = {MusselSeg: Semantic Segmentation for Rocky Intertidal Mussel Habitat},
  month = July,
  year = 2024,
  doi = { 10.57967/hf/2760 },
  publisher = {Hakai Institute {\tt [email protected]}},
  howpublished = {\url{https://huggingface.co/datasets/HakaiInstitute/mussel-seg-1024-1024}}
}

Known limitations

  • Limited seasonal variation due to imagery being captured primarily in summer months
  • Imagery only covers areas with known mussel beds
  • No examples of mussel beds near urban or built-up environments
  • Labelling errors may be present in areas with shadows, where it is difficult to distinguish mussels beds
Downloads last month
80