_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
βŒ€
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]
likes
int64
0
6.87k
trendingScore
float64
0
131
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
βŒ€
downloads
int64
0
2.15M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]
key
stringclasses
1 value
paperswithcode_id
stringclasses
645 values
citation
stringlengths
0
10.7k
βŒ€
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
6,868
131
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
5,362
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
6782cb3d244c0e06b1362fed
NovaSky-AI/Sky-T1_data_17k
NovaSky-AI
{"size_categories": ["10K<n<100K"], "license": "apache-2.0"}
false
null
2025-01-14T10:36:09
81
81
false
3e260822dae5d833d9b040e34265d5f9a2b8a6a5
Sky-T1_data_17k.json: The 17k training data used to train Sky-T1-32B-Preview. The final data contains 5k coding data from APPs and TACO, and 10k math data from AIME, MATH, and Olympiads subsets of the NuminaMATH dataset. In addition, we maintain 1k science and puzzle data from STILL-2.
599
[ "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-11T19:49:17
null
null
67750882633d421965733171
DAMO-NLP-SG/multimodal_textbook
DAMO-NLP-SG
{"license": "apache-2.0", "task_categories": ["text-generation", "summarization"], "language": ["en"], "tags": ["Pretraining", "Interleaved", "Reasoning"], "size_categories": ["1M<n<10M"]}
false
null
2025-01-11T11:48:45
97
69
false
b83d307b2682d6b12420f5b93f4360880ea89df4
Multimodal-Textbook-6.5M Overview This dataset is for "2.5 Years in Class: A Multimodal Textbook for Vision-Language Pretraining", containing 6.5M images interleaving with 0.8B text from instructional videos. It contains pre-training corpus using interleaved image-text format. Specifically, our multimodal-textbook includes 6.5M keyframes extracted from instructional videos, interleaving with 0.8B ASR texts. All the images and text are extracted from… See the full description on the dataset page: https://huggingface.co/datasets/DAMO-NLP-SG/multimodal_textbook.
6,233
[ "task_categories:text-generation", "task_categories:summarization", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "arxiv:2501.00958", "region:us", "Pretraining", "Interleaved", "Reasoning" ]
2025-01-01T09:18:58
null
null
66cbf7ef92e9f5b19fcd65aa
cfahlgren1/react-code-instructions
cfahlgren1
{"license": "mit", "pretty_name": "React Code Instructions"}
false
null
2025-01-15T00:23:21
121
44
false
787d9ed92d5b68adda1056c05d256a8e54106c42
React Code Instructions Popular Queries Number of instructions by Model Unnested Messages Instructions Added Per Day Dataset of Claude Artifact esque React Apps generated by Llama 3.1 70B, Llama 3.1 405B, and Deepseek Chat V3. Examples Virtual Fitness Trainer Website LinkedIn Clone iPhone Calculator Chipotle Waitlist Apple Store
749
[ "license:mit", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
2024-08-26T03:35:11
null
null
6649d353babc0b33565e1a4a
HumanLLMs/Human-Like-DPO-Dataset
HumanLLMs
{"language": ["en"], "license": "llama3", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data.json"}]}]}
false
null
2025-01-12T21:01:07
69
39
false
dd82ab6a284a15765964149e6a6603ff8ed7d672
Enhancing Human-Like Responses in Large Language Models πŸ€— Models | πŸ“Š Dataset | πŸ“„ Paper Human-Like-DPO-Dataset This dataset was created as part of research aimed at improving conversational fluency and engagement in large language models. It is suitable for formats like Direct Preference Optimization (DPO) to guide models toward generating more human-like responses. The dataset includes 10,884 samples across 256 topics, including: Technology Daily Life Science… See the full description on the dataset page: https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset.
380
[ "language:en", "license:llama3", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.05032", "region:us" ]
2024-05-19T10:24:19
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-01-13T06:46:27
66
31
false
4c9573e7de1e8660b88158db2efa7c7204bbd269
Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o, which searches for solutions to verifiable medical problems and validates them through a medical verifier. For details, see our paper and GitHub repository. Citation If you find our data useful, please consider citing our work! @misc{chen2024huatuogpto1medicalcomplexreasoning, title={HuatuoGPT-o1… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
648
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
6758176e04e2f15d7bfacd54
PowerInfer/QWQ-LONGCOT-500K
PowerInfer
{"license": "apache-2.0", "language": ["en"]}
false
null
2024-12-26T10:19:19
104
26
false
10a787d967281599e9be6761717147817c018424
This repository contains approximately 500,000 instances of responses generated using QwQ-32B-Preview language model. The dataset combines prompts from multiple high-quality sources to create diverse and comprehensive training data. The dataset is available under the Apache 2.0 license. Over 75% of the responses exceed 8,000 tokens in length. The majority of prompts were carefully created using persona-based methods to create challenging instructions. Bias, Risks, and Limitations… See the full description on the dataset page: https://huggingface.co/datasets/PowerInfer/QWQ-LONGCOT-500K.
937
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-12-10T10:26:54
null
null
6695831f2d25bd04e969b0a2
AI-MO/NuminaMath-CoT
AI-MO
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2495457595.0398345, "num_examples": 859494}, {"name": "test", "num_bytes": 290340.31593470514, "num_examples": 100}], "download_size": 1234351634, "dataset_size": 2495747935.355769}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["aimo", "math"], "pretty_name": "NuminaMath CoT"}
false
null
2024-11-25T05:31:43
318
21
false
9d8d210c9f6a36c8f3cd84045668c9b7800ef517
Dataset Card for NuminaMath CoT Dataset Summary Approximately 860k math problems, where each solution is formatted in a Chain of Thought (CoT) manner. The sources of the dataset range from Chinese high school math exercises to US and international mathematics olympiad competition problems. The data were primarily collected from online exam paper PDFs and mathematics discussion forums. The processing steps include (a) OCR from the original PDFs, (b) segmentation… See the full description on the dataset page: https://huggingface.co/datasets/AI-MO/NuminaMath-CoT.
3,594
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "aimo", "math" ]
2024-07-15T20:14:23
null
null
677c1f196b1653e3955dbce7
Rapidata/text-2-image-Rich-Human-Feedback
Rapidata
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "prompt", "dtype": "string"}, {"name": "word_scores", "dtype": "string"}, {"name": "alignment_score_norm", "dtype": "float32"}, {"name": "coherence_score_norm", "dtype": "float32"}, {"name": "style_score_norm", "dtype": "float32"}, {"name": "alignment_heatmap", "sequence": {"sequence": "float16"}}, {"name": "coherence_heatmap", "sequence": {"sequence": "float16"}}, {"name": "alignment_score", "dtype": "float32"}, {"name": "coherence_score", "dtype": "float32"}, {"name": "style_score", "dtype": "float32"}], "splits": [{"name": "train", "num_bytes": 25257389633.104, "num_examples": 13024}], "download_size": 17856619960, "dataset_size": 25257389633.104}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["text-to-image", "text-classification", "image-classification", "image-to-text", "image-segmentation"], "language": ["en"], "tags": ["t2i", "preferences", "human", "flux", "midjourney", "imagen", "dalle", "heatmap", "coherence", "alignment", "style", "plausiblity"], "pretty_name": "Rich Human Feedback for Text to Image Models", "size_categories": ["1M<n<10M"]}
false
null
2025-01-11T13:23:04
20
20
false
e77afd00e481d9d2ca41a5b5c4f89cb704de45c6
Building upon Google's research Rich Human Feedback for Text-to-Image Generation we have collected over 1.5 million responses from 152'684 individual humans using Rapidata via the Python API. Collection took roughly 5 days. If you get value from this dataset and would like to see more in the future, please consider liking it. Overview We asked humans to evaluate AI-generated images in style, coherence and prompt alignment. For images that contained flaws, participants were… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/text-2-image-Rich-Human-Feedback.
1,911
[ "task_categories:text-to-image", "task_categories:text-classification", "task_categories:image-classification", "task_categories:image-to-text", "task_categories:image-segmentation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2312.10240", "region:us", "t2i", "preferences", "human", "flux", "midjourney", "imagen", "dalle", "heatmap", "coherence", "alignment", "style", "plausiblity" ]
2025-01-06T18:21:13
null
null
67449661149efb6edaa63b98
HuggingFaceTB/finemath
HuggingFaceTB
{"license": "odc-by", "dataset_info": [{"config_name": "finemath-3plus", "features": [{"name": "url", "dtype": "string"}, {"name": "fetch_time", "dtype": "int64"}, {"name": "content_mime_type", "dtype": "string"}, {"name": "warc_filename", "dtype": "string"}, {"name": "warc_record_offset", "dtype": "int32"}, {"name": "warc_record_length", "dtype": "int32"}, {"name": "text", "dtype": "string"}, {"name": "token_count", "dtype": "int32"}, {"name": "char_count", "dtype": "int32"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "crawl", "dtype": "string"}, {"name": "snapshot_type", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 137764105388.93857, "num_examples": 21405610}], "download_size": 65039196945, "dataset_size": 137764105388.93857}, {"config_name": "finemath-4plus", "features": [{"name": "url", "dtype": "string"}, {"name": "fetch_time", "dtype": "int64"}, {"name": "content_mime_type", "dtype": "string"}, {"name": "warc_filename", "dtype": "string"}, {"name": "warc_record_offset", "dtype": "int32"}, {"name": "warc_record_length", "dtype": "int32"}, {"name": "text", "dtype": "string"}, {"name": "token_count", "dtype": "int32"}, {"name": "char_count", "dtype": "int32"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "crawl", "dtype": "string"}, {"name": "snapshot_type", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 39101488149.09091, "num_examples": 6699493}], "download_size": 18365184633, "dataset_size": 39101488149.09091}, {"config_name": "infiwebmath-3plus", "features": [{"name": "url", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "token_count", "dtype": "int64"}, {"name": "char_count", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 96485696853.10182, "num_examples": 13882669}], "download_size": 46808660851, "dataset_size": 96485696853.10182}, {"config_name": "infiwebmath-4plus", "features": [{"name": "url", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}, {"name": "token_count", "dtype": "int64"}, {"name": "char_count", "dtype": "int64"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 40002719500.1551, "num_examples": 6296212}], "download_size": 19234328998, "dataset_size": 40002719500.1551}], "configs": [{"config_name": "finemath-3plus", "data_files": [{"split": "train", "path": "finemath-3plus/train-*"}]}, {"config_name": "finemath-4plus", "data_files": [{"split": "train", "path": "finemath-4plus/train-*"}]}, {"config_name": "infiwebmath-3plus", "data_files": [{"split": "train", "path": "infiwebmath-3plus/train-*"}]}, {"config_name": "infiwebmath-4plus", "data_files": [{"split": "train", "path": "infiwebmath-4plus/train-*"}]}]}
false
null
2024-12-23T11:19:16
251
18
false
8f233cf84cff0b817b3ffb26d5be7370990dd557
πŸ“ FineMath What is it? πŸ“ FineMath consists of 34B tokens (FineMath-3+) and 54B tokens (FineMath-3+ with InfiMM-WebMath-3+) of mathematical educational content filtered from CommonCrawl. To curate this dataset, we trained a mathematical content classifier using annotations generated by LLama-3.1-70B-Instruct. We used the classifier to retain only the most educational mathematics content, focusing on clear explanations and step-by-step problem solving rather than… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/finemath.
37,753
[ "license:odc-by", "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "doi:10.57967/hf/3847", "region:us" ]
2024-11-25T15:23:13
null
null
66a6da71f0dc7c8df2e0f979
OpenLeecher/lmsys_chat_1m_clean
OpenLeecher
{"language": ["en"], "size_categories": ["100K<n<1M"], "pretty_name": "Cleaned LMSYS dataset", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "category", "dtype": "string"}, {"name": "grounded", "dtype": "bool"}, {"name": "deepseek_response", "struct": [{"name": "moralization", "dtype": "int64"}, {"name": "reward", "dtype": "float64"}, {"name": "value", "dtype": "string"}]}, {"name": "phi-3-mini_response", "struct": [{"name": "moralization", "dtype": "int64"}, {"name": "reward", "dtype": "float64"}, {"name": "value", "dtype": "string"}]}, {"name": "flaw", "dtype": "string"}, {"name": "agreement", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 1673196622, "num_examples": 273402}], "download_size": 906472159, "dataset_size": 1673196622}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2024-12-31T22:35:13
58
15
false
e9f2f6838a2dbba87c216bb6bc406e8d7ce0f389
Cleaning and Categorizing A few weeks ago, I had the itch to do some data crunching, so I began this project - to clean and classify lmsys-chat-1m. The process was somewhat long and tedious, but here is the quick overview: 1. Removing Pure Duplicate Instructions The first step was to eliminate pure duplicate instructions. This involved: Removing whitespace and punctuation. Ensuring that if two instructions matched after that, only one was retained. This step… See the full description on the dataset page: https://huggingface.co/datasets/OpenLeecher/lmsys_chat_1m_clean.
1,099
[ "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-07-28T23:55:29
null
null
676593a303cc6dbb6e857610
Rapidata/text-2-video-human-preferences
Rapidata
{"license": "apache-2.0", "task_categories": ["text-to-video", "video-classification"], "tags": ["human", "preferences", "coherence", "plausibilty", "style", "alignment"], "language": ["en"], "pretty_name": "Human Preferences for Text to Video Models", "size_categories": ["1K<n<10K"], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "video1", "dtype": "string"}, {"name": "video2", "dtype": "string"}, {"name": "weighted_results1_Alignment", "dtype": "float64"}, {"name": "weighted_results2_Alignment", "dtype": "float64"}, {"name": "detailedResults_Alignment", "list": [{"name": "userDetails", "struct": [{"name": "country", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "userScore", "dtype": "float64"}]}, {"name": "votedFor", "dtype": "string"}]}, {"name": "weighted_results1_Coherence", "dtype": "float64"}, {"name": "weighted_results2_Coherence", "dtype": "float64"}, {"name": "detailedResults_Coherence", "list": [{"name": "userDetails", "struct": [{"name": "country", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "userScore", "dtype": "float64"}]}, {"name": "votedFor", "dtype": "string"}]}, {"name": "weighted_results1_Preference", "dtype": "float64"}, {"name": "weighted_results2_Preference", "dtype": "float64"}, {"name": "detailedResults_Preference", "list": [{"name": "userDetails", "struct": [{"name": "country", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "userScore", "dtype": "float64"}]}, {"name": "votedFor", "dtype": "string"}]}, {"name": "file_name1", "dtype": "string"}, {"name": "file_name2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 540595, "num_examples": 316}], "download_size": 122082, "dataset_size": 540595}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-01-13T15:43:12
14
14
false
8d2db6367f00d60b6c94797298c8c61c7532fc0d
Rapidata Video Generation Preference Dataset If you get value from this dataset and would like to see more in the future, please consider liking it. This dataset was collected in ~12 hours using the Rapidata Python API, accessible to anyone and ideal for large scale data annotation. The data collected in this dataset informs our text-2-video model benchmark. We just started so currently only two models are represented in this set: Sora Hunyouan Pika 2.0 is currently… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/text-2-video-human-preferences.
396
[ "task_categories:text-to-video", "task_categories:video-classification", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:tabular", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "human", "preferences", "coherence", "plausibilty", "style", "alignment" ]
2024-12-20T15:56:19
null
null
673a1149a7a311f5bed5c624
HuggingFaceTB/smoltalk
HuggingFaceTB
{"language": ["en"], "tags": ["synthetic"], "pretty_name": "SmolTalk", "size_categories": ["1M<n<10M"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "data/all/train-*"}, {"split": "test", "path": "data/all/test-*"}]}, {"config_name": "smol-magpie-ultra", "data_files": [{"split": "train", "path": "data/smol-magpie-ultra/train-*"}, {"split": "test", "path": "data/smol-magpie-ultra/test-*"}]}, {"config_name": "smol-constraints", "data_files": [{"split": "train", "path": "data/smol-constraints/train-*"}, {"split": "test", "path": "data/smol-constraints/test-*"}]}, {"config_name": "smol-rewrite", "data_files": [{"split": "train", "path": "data/smol-rewrite/train-*"}, {"split": "test", "path": "data/smol-rewrite/test-*"}]}, {"config_name": "smol-summarize", "data_files": [{"split": "train", "path": "data/smol-summarize/train-*"}, {"split": "test", "path": "data/smol-summarize/test-*"}]}, {"config_name": "apigen-80k", "data_files": [{"split": "train", "path": "data/apigen-80k/train-*"}, {"split": "test", "path": "data/apigen-80k/test-*"}]}, {"config_name": "everyday-conversations", "data_files": [{"split": "train", "path": "data/everyday-conversations/train-*"}, {"split": "test", "path": "data/everyday-conversations/test-*"}]}, {"config_name": "explore-instruct-rewriting", "data_files": [{"split": "train", "path": "data/explore-instruct-rewriting/train-*"}, {"split": "test", "path": "data/explore-instruct-rewriting/test-*"}]}, {"config_name": "longalign", "data_files": [{"split": "train", "path": "data/longalign/train-*"}, {"split": "test", "path": "data/longalign/test-*"}]}, {"config_name": "metamathqa-50k", "data_files": [{"split": "train", "path": "data/metamathqa-50k/train-*"}, {"split": "test", "path": "data/metamathqa-50k/test-*"}]}, {"config_name": "numina-cot-100k", "data_files": [{"split": "train", "path": "data/numina-cot-100k/train-*"}, {"split": "test", "path": "data/numina-cot-100k/test-*"}]}, {"config_name": "openhermes-100k", "data_files": [{"split": "train", "path": "data/openhermes-100k/train-*"}, {"split": "test", "path": "data/openhermes-100k/test-*"}]}, {"config_name": "self-oss-instruct", "data_files": [{"split": "train", "path": "data/self-oss-instruct/train-*"}, {"split": "test", "path": "data/self-oss-instruct/test-*"}]}, {"config_name": "systemchats-30k", "data_files": [{"split": "train", "path": "data/systemchats-30k/train-*"}, {"split": "test", "path": "data/systemchats-30k/test-*"}]}]}
false
null
2024-11-26T11:02:25
280
13
false
5a40ecb185e55dd30edf3c24b77e67f6ea0d659b
SmolTalk Dataset description This is a synthetic dataset designed for supervised finetuning (SFT) of LLMs. It was used to build SmolLM2-Instruct family of models and contains 1M samples. During the development of SmolLM2, we observed that models finetuned on public SFT datasets underperformed compared to other models with proprietary instruction datasets. To address this gap, we created new synthetic datasets that improve instruction following while covering… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/smoltalk.
6,264
[ "language:en", "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "synthetic" ]
2024-11-17T15:52:41
null
null
673e9e53cdad8a9744b0bf1b
O1-OPEN/OpenO1-SFT
O1-OPEN
{"license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en", "zh"], "size_categories": ["10K<n<100K"]}
false
null
2024-12-17T02:30:09
326
13
false
63112de109aa755e9cdfad63a13f08a92dd7df36
SFT Data for CoT Activation πŸŽ‰πŸŽ‰πŸŽ‰This repository contains the dataset used for fine-tuning a language model using SFT for Chain-of-Thought Activation. 🌈🌈🌈The dataset is designed to enhance the model's ability to generate coherent and logical reasoning sequences. β˜„β˜„β˜„By using this dataset, the model can learn to produce detailed and structured reasoning steps, enhancing its performance on complex reasoning tasks. Statistics 1️⃣Total Records: 77,685… See the full description on the dataset page: https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT.
2,134
[ "task_categories:question-answering", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-21T02:43:31
null
null
677e59ab4bf7f0d4735ea7da
llamaindex/vdr-multilingual-train
llamaindex
{"language": ["de", "it", "fr", "es", "en"], "multilinguality": ["multilingual"], "size_categories": ["100K<n<1M"], "pretty_name": "Multilingual Visual Document Retrieval", "dataset_info": [{"config_name": "en", "features": [{"name": "id", "dtype": "string"}, {"name": "query", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "negatives", "sequence": {"dtype": "string"}}, {"name": "language", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19695589638, "num_examples": 94225}], "download_size": 19695589638, "dataset_size": 19695589638}, {"config_name": "es", "features": [{"name": "id", "dtype": "string"}, {"name": "query", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "negatives", "sequence": {"dtype": "string"}}, {"name": "language", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19881676198, "num_examples": 102685}], "download_size": 19881676198, "dataset_size": 19881676198}, {"config_name": "it", "features": [{"name": "id", "dtype": "string"}, {"name": "query", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "negatives", "sequence": {"dtype": "string"}}, {"name": "language", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20278641470, "num_examples": 98747}], "download_size": 20278641470, "dataset_size": 20278641470}, {"config_name": "de", "features": [{"name": "id", "dtype": "string"}, {"name": "query", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "negatives", "sequence": {"dtype": "string"}}, {"name": "language", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 19629975126, "num_examples": 100713}], "download_size": 19629975126, "dataset_size": 19629975126}, {"config_name": "fr", "features": [{"name": "id", "dtype": "string"}, {"name": "query", "dtype": "string"}, {"name": "image", "dtype": "image"}, {"name": "negatives", "sequence": {"dtype": "string"}}, {"name": "language", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 20825335207, "num_examples": 99797}], "download_size": 20825335207, "dataset_size": 20825335207}], "configs": [{"config_name": "en", "data_files": [{"split": "train", "path": "en/train-*"}]}, {"config_name": "it", "data_files": [{"split": "train", "path": "it/train-*"}]}, {"config_name": "fr", "data_files": [{"split": "train", "path": "fr/train-*"}]}, {"config_name": "es", "data_files": [{"split": "train", "path": "es/train-*"}]}, {"config_name": "de", "data_files": [{"split": "train", "path": "de/train-*"}]}], "license": "apache-2.0"}
false
null
2025-01-10T16:36:36
13
13
false
6b92b5cae23d44509f1e05d7062befe5ec77f7c9
Multilingual Visual Document Retrieval Dataset This dataset consists of 500k multilingual query image samples, collected and generated from scratch using public internet pdfs. The queries are synthetic and generated using VLMs (gemini-1.5-pro and Qwen2-VL-72B). It was used to train the vdr-2b-multi-v1 retrieval multimodal, multilingual embedding model. How it was created This is the entire data pipeline used to create the Italian subset of this dataset. Each… See the full description on the dataset page: https://huggingface.co/datasets/llamaindex/vdr-multilingual-train.
1,440
[ "multilinguality:multilingual", "language:de", "language:it", "language:fr", "language:es", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-08T10:55:39
null
null
676f70968756741d47c691df
FreedomIntelligence/medical-o1-verifiable-problem
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en"], "tags": ["medical", "biology"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "medical_o1_verifiable_problem.json"}]}]}
false
null
2024-12-30T02:56:46
25
12
false
46d5175eb74fdef3516d51d52e8c40db04bbdf35
Introduction This dataset features open-ended medical problems designed to improve LLMs' medical reasoning. Each entry includes a open-ended question and a ground-truth answer based on challenging medical exams. The verifiable answers enable checking LLM outputs, refining their reasoning processes. For details, see our paper and GitHub repository. Citation If you find our data useful, please consider citing our work!… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-verifiable-problem.
329
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:26
null
null
677e5956e84a20259e43d869
Rapidata/Translation-gpt4o_mini-v-gpt4o-v-deepl
Rapidata
{"dataset_info": {"features": [{"name": "original_text", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "total_responses", "dtype": "int64"}, {"name": "weighted_votes_1", "dtype": "float64"}, {"name": "weighted_votes_2", "dtype": "float64"}, {"name": "translation_model_1", "dtype": "string"}, {"name": "translation_model_2", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10792019, "num_examples": 746}], "download_size": 1059070, "dataset_size": 10792019}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["translation"], "tags": ["translation", "humanfeedback", "gpt", "deepl", "gpt4o", "gpt4o-mini", "DE", "PT", "ES", "FR"]}
false
null
2025-01-12T19:33:15
12
12
false
6770337d65e354f89e8377a001b7004b020a89e6
If you get value from this dataset and would like to see more in the future, please consider liking it. Overview This dataset compares the translation capabilities of GPT-4o and GPT-4o-mini against DeepL across different languages. The comparison involved 100 distinct questions (found under raw_files) in 4 languages, with each translation being rated by 100 native speakers. Texts that were translated identically across platforms were excluded from the analysis.… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/Translation-gpt4o_mini-v-gpt4o-v-deepl.
179
[ "task_categories:translation", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "translation", "humanfeedback", "gpt", "deepl", "gpt4o", "gpt4o-mini", "DE", "PT", "ES", "FR" ]
2025-01-08T10:54:14
null
null
66bffb77453a7ef6c587560c
edinburgh-dawg/mmlu-redux-2.0
edinburgh-dawg
{"dataset_info": [{"config_name": "abstract_algebra", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "anatomy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "astronomy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "business_ethics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "clinical_knowledge", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_biology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_chemistry", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_computer_science", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_medicine", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "college_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "computer_security", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "conceptual_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "econometrics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "electrical_engineering", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "elementary_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "formal_logic", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "global_facts", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_biology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_chemistry", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_computer_science", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_european_history", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_geography", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_government_and_politics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_macroeconomics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_microeconomics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_psychology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_statistics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_us_history", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "high_school_world_history", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "human_aging", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "human_sexuality", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "international_law", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "jurisprudence", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "logical_fallacies", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "machine_learning", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "management", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "marketing", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "medical_genetics", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "miscellaneous", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "moral_disputes", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "moral_scenarios", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "nutrition", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "philosophy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "prehistory", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_accounting", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_law", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_medicine", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "professional_psychology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "public_relations", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "security_studies", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "sociology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "us_foreign_policy", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "virology", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}, {"config_name": "world_religions", "features": [{"name": "question", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": "int64"}, {"name": "error_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "correct_answer", "dtype": "string"}, {"name": "potential_reason", "dtype": "string"}], "splits": [{"name": "test", "num_examples": 100}]}], "configs": [{"config_name": "abstract_algebra", "data_files": [{"split": "test", "path": "abstract_algebra/data-*"}]}, {"config_name": "anatomy", "data_files": [{"split": "test", "path": "anatomy/data-*"}]}, {"config_name": "astronomy", "data_files": [{"split": "test", "path": "astronomy/data-*"}]}, {"config_name": "business_ethics", "data_files": [{"split": "test", "path": "business_ethics/data-*"}]}, {"config_name": "clinical_knowledge", "data_files": [{"split": "test", "path": "clinical_knowledge/data-*"}]}, {"config_name": "college_biology", "data_files": [{"split": "test", "path": "college_biology/data-*"}]}, {"config_name": "college_chemistry", "data_files": [{"split": "test", "path": "college_chemistry/data-*"}]}, {"config_name": "college_computer_science", "data_files": [{"split": "test", "path": "college_computer_science/data-*"}]}, {"config_name": "college_mathematics", "data_files": [{"split": "test", "path": "college_mathematics/data-*"}]}, {"config_name": "college_medicine", "data_files": [{"split": "test", "path": "college_medicine/data-*"}]}, {"config_name": "college_physics", "data_files": [{"split": "test", "path": "college_physics/data-*"}]}, {"config_name": "computer_security", "data_files": [{"split": "test", "path": "computer_security/data-*"}]}, {"config_name": "conceptual_physics", "data_files": [{"split": "test", "path": "conceptual_physics/data-*"}]}, {"config_name": "econometrics", "data_files": [{"split": "test", "path": "econometrics/data-*"}]}, {"config_name": "electrical_engineering", "data_files": [{"split": "test", "path": "electrical_engineering/data-*"}]}, {"config_name": "elementary_mathematics", "data_files": [{"split": "test", "path": "elementary_mathematics/data-*"}]}, {"config_name": "formal_logic", "data_files": [{"split": "test", "path": "formal_logic/data-*"}]}, {"config_name": "global_facts", "data_files": [{"split": "test", "path": "global_facts/data-*"}]}, {"config_name": "high_school_biology", "data_files": [{"split": "test", "path": "high_school_biology/data-*"}]}, {"config_name": "high_school_chemistry", "data_files": [{"split": "test", "path": "high_school_chemistry/data-*"}]}, {"config_name": "high_school_computer_science", "data_files": [{"split": "test", "path": "high_school_computer_science/data-*"}]}, {"config_name": "high_school_european_history", "data_files": [{"split": "test", "path": "high_school_european_history/data-*"}]}, {"config_name": "high_school_geography", "data_files": [{"split": "test", "path": "high_school_geography/data-*"}]}, {"config_name": "high_school_government_and_politics", "data_files": [{"split": "test", "path": "high_school_government_and_politics/data-*"}]}, {"config_name": "high_school_macroeconomics", "data_files": [{"split": "test", "path": "high_school_macroeconomics/data-*"}]}, {"config_name": "high_school_mathematics", "data_files": [{"split": "test", "path": "high_school_mathematics/data-*"}]}, {"config_name": "high_school_microeconomics", "data_files": [{"split": "test", "path": "high_school_microeconomics/data-*"}]}, {"config_name": "high_school_physics", "data_files": [{"split": "test", "path": "high_school_physics/data-*"}]}, {"config_name": "high_school_psychology", "data_files": [{"split": "test", "path": "high_school_psychology/data-*"}]}, {"config_name": "high_school_statistics", "data_files": [{"split": "test", "path": "high_school_statistics/data-*"}]}, {"config_name": "high_school_us_history", "data_files": [{"split": "test", "path": "high_school_us_history/data-*"}]}, {"config_name": "high_school_world_history", "data_files": [{"split": "test", "path": "high_school_world_history/data-*"}]}, {"config_name": "human_aging", "data_files": [{"split": "test", "path": "human_aging/data-*"}]}, {"config_name": "human_sexuality", "data_files": [{"split": "test", "path": "human_sexuality/data-*"}]}, {"config_name": "international_law", "data_files": [{"split": "test", "path": "international_law/data-*"}]}, {"config_name": "jurisprudence", "data_files": [{"split": "test", "path": "jurisprudence/data-*"}]}, {"config_name": "logical_fallacies", "data_files": [{"split": "test", "path": "logical_fallacies/data-*"}]}, {"config_name": "machine_learning", "data_files": [{"split": "test", "path": "machine_learning/data-*"}]}, {"config_name": "management", "data_files": [{"split": "test", "path": "management/data-*"}]}, {"config_name": "marketing", "data_files": [{"split": "test", "path": "marketing/data-*"}]}, {"config_name": "medical_genetics", "data_files": [{"split": "test", "path": "medical_genetics/data-*"}]}, {"config_name": "miscellaneous", "data_files": [{"split": "test", "path": "miscellaneous/data-*"}]}, {"config_name": "moral_disputes", "data_files": [{"split": "test", "path": "moral_disputes/data-*"}]}, {"config_name": "moral_scenarios", "data_files": [{"split": "test", "path": "moral_scenarios/data-*"}]}, {"config_name": "nutrition", "data_files": [{"split": "test", "path": "nutrition/data-*"}]}, {"config_name": "philosophy", "data_files": [{"split": "test", "path": "philosophy/data-*"}]}, {"config_name": "prehistory", "data_files": [{"split": "test", "path": "prehistory/data-*"}]}, {"config_name": "professional_accounting", "data_files": [{"split": "test", "path": "professional_accounting/data-*"}]}, {"config_name": "professional_law", "data_files": [{"split": "test", "path": "professional_law/data-*"}]}, {"config_name": "professional_medicine", "data_files": [{"split": "test", "path": "professional_medicine/data-*"}]}, {"config_name": "professional_psychology", "data_files": [{"split": "test", "path": "professional_psychology/data-*"}]}, {"config_name": "public_relations", "data_files": [{"split": "test", "path": "public_relations/data-*"}]}, {"config_name": "security_studies", "data_files": [{"split": "test", "path": "security_studies/data-*"}]}, {"config_name": "sociology", "data_files": [{"split": "test", "path": "sociology/data-*"}]}, {"config_name": "us_foreign_policy", "data_files": [{"split": "test", "path": "us_foreign_policy/data-*"}]}, {"config_name": "virology", "data_files": [{"split": "test", "path": "virology/data-*"}]}, {"config_name": "world_religions", "data_files": [{"split": "test", "path": "world_religions/data-*"}]}], "license": "cc-by-4.0", "task_categories": ["question-answering"], "language": ["en"], "pretty_name": "MMLU-Redux-2.0", "size_categories": ["1K<n<10K"]}
false
null
2024-11-07T15:38:08
11
11
false
63f54ebd32c36485c679f53b8e2f576d689b9b34
Dataset Card for MMLU-Redux-2.0 MMLU-Redux is a subset of 5,700 manually re-annotated questions across 57 MMLU subjects. Dataset Details Dataset Description Each data point in MMLU-Redux contains seven columns: question (str): The original MMLU question. choices (List[str]): The original list of four choices associated with the question from the MMLU dataset. answer (int): The MMLU ground truth label in the form of an array index between 0 and… See the full description on the dataset page: https://huggingface.co/datasets/edinburgh-dawg/mmlu-redux-2.0.
380
[ "task_categories:question-answering", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:arrow", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:2406.04127", "doi:10.57967/hf/3469", "region:us" ]
2024-08-17T01:23:03
null
null
66c84764a47b2d6c582bbb02
amphion/Emilia-Dataset
amphion
{"license": "cc-by-nc-4.0", "task_categories": ["text-to-speech", "automatic-speech-recognition"], "language": ["zh", "en", "ja", "fr", "de", "ko"], "pretty_name": "Emilia", "size_categories": ["10M<n<100M"], "extra_gated_prompt": "Terms of Access: The researcher has requested permission to use the Emilia dataset and the Emilia-Pipe preprocessing pipeline. In exchange for such permission, the researcher hereby agrees to the following terms and conditions:\n1. The researcher shall use the dataset ONLY for non-commercial research and educational purposes.\n2. The authors make no representations or warranties regarding the dataset, \n including but not limited to warranties of non-infringement or fitness for a particular purpose.\n\n3. The researcher accepts full responsibility for their use of the dataset and shall defend and indemnify the authors of Emilia, \n including their employees, trustees, officers, and agents, against any and all claims arising from the researcher's use of the dataset, \n including but not limited to the researcher's use of any copies of copyrighted content that they may create from the dataset.\n\n4. The researcher may provide research associates and colleagues with access to the dataset,\n provided that they first agree to be bound by these terms and conditions.\n \n5. The authors reserve the right to terminate the researcher's access to the dataset at any time.\n6. If the researcher is employed by a for-profit, commercial entity, the researcher's employer shall also be bound by these terms and conditions, and the researcher hereby represents that they are fully authorized to enter into this agreement on behalf of such employer.", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Position": "text", "Your Supervisor/manager/director": "text", "I agree to the Terms of Access": "checkbox"}}
false
null
2024-09-06T13:29:55
190
11
false
bcaad00d13e7c101485990a46e88f5884ffed3fc
Emilia: An Extensive, Multilingual, and Diverse Speech Dataset for Large-Scale Speech Generation This is the official repository πŸ‘‘ for the Emilia dataset and the source code for the Emilia-Pipe speech data preprocessing pipeline. News πŸ”₯ 2024/08/28: Welcome to join Amphion's Discord channel to stay connected and engage with our community! 2024/08/27: The Emilia dataset is now publicly available! Discover the most extensive and diverse speech generation… See the full description on the dataset page: https://huggingface.co/datasets/amphion/Emilia-Dataset.
36,883
[ "task_categories:text-to-speech", "task_categories:automatic-speech-recognition", "language:zh", "language:en", "language:ja", "language:fr", "language:de", "language:ko", "license:cc-by-nc-4.0", "size_categories:10M<n<100M", "format:webdataset", "modality:audio", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "arxiv:2407.05361", "region:us" ]
2024-08-23T08:25:08
null
null
66a1d16a27fd84b81d732482
TEAMREBOOTT-AI/SciCap-MLBCAP
TEAMREBOOTT-AI
{"license": "cc-by-nc-sa-4.0", "task_categories": ["text-generation", "image-to-text"], "language": ["en"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "image", "dtype": "image"}, {"name": "id", "dtype": "int64"}, {"name": "figure_type", "dtype": "string"}, {"name": "ocr", "dtype": "string"}, {"name": "paragraph", "dtype": "string"}, {"name": "mention", "dtype": "string"}, {"name": "figure_description", "dtype": "string"}, {"name": "mlbcap_long", "dtype": "string"}, {"name": "mlbcap_short", "dtype": "string"}, {"name": "categories", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2444177418.129, "num_examples": 47639}], "download_size": 2487129056, "dataset_size": 2444177418.129}, "size_categories": ["10K<n<100K"]}
false
null
2025-01-07T13:56:33
17
10
false
44f062ec4e5ec42898326cbea2f80f147a1ba861
MLBCAP: Multi-LLM Collaborative Caption Generation in Scientific Documents πŸ“„ PaperMLBCAP has been accepted for presentation at AI4Research @ AAAI 2025. πŸŽ‰ πŸ“Œ Introduction Scientific figure captioning is a challenging task that demands contextually accurate descriptions of visual content. Existing approaches often oversimplify the task by treating it as either an image-to-text conversion or text summarization problem, leading to suboptimal results. Furthermore… See the full description on the dataset page: https://huggingface.co/datasets/TEAMREBOOTT-AI/SciCap-MLBCAP.
613
[ "task_categories:text-generation", "task_categories:image-to-text", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2501.02552", "region:us" ]
2024-07-25T04:15:38
null
null
6761599ce5d10c2b3122000b
Rapidata/open-image-preferences-v1-more-results-binarized
Rapidata
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "chosen", "dtype": "image"}, {"name": "rejected", "dtype": "image"}, {"name": "chosen_model", "dtype": "string"}, {"name": "rejected_model", "dtype": "string"}, {"name": "evolution", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "sub_category", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3039283260, "num_examples": 10480}], "download_size": 3035581905, "dataset_size": 3039283260}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-01-10T22:04:09
10
10
false
09c2763961cc51c87b4d41dddce21a265c0e42e6
We wanted to contribute to the challenge posed by the data-is-better-together community (description below). We collected 170'000 preferences using our API from people all around the world in rougly 3 days (docs.rapidata.ai): If you get value from this dataset and would like to see more in the future, please consider liking it. Dataset Card for image-preferences-results Original Prompt: Anime-style concept art of a Mayan Quetzalcoatl biomutant, dystopian world… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/open-image-preferences-v1-more-results-binarized.
549
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-12-17T10:59:40
null
null
6763e94724dee5a47c7c77f7
agibot-world/AgiBotWorld-Alpha
agibot-world
{"pretty_name": "AgiBot World", "size_categories": ["n>1T"], "task_categories": ["other"], "language": ["en"], "tags": ["real-world", "dual-arm", "Robotics manipulation"], "extra_gated_prompt": "### AgiBot World COMMUNITY LICENSE AGREEMENT\nAgiBot World Alpha Release Date: December 30, 2024 All the data and code within this repo are under [CC BY-NC-SA 4.0](https://creativecommons.org/licenses/by-nc-sa/4.0/).", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Email": "text", "Country": "country", "Affiliation": "text", "Phone": "text", "Job title": {"type": "select", "options": ["Student", "Research Graduate", "AI researcher", "AI developer/engineer", "Reporter", "Other"]}, "Research interest": "text", "geo": "ip_location", "By clicking Submit below I accept the terms of the license and acknowledge that the information I provide will be collected stored processed and shared in accordance with the AgiBot Privacy Policy": "checkbox"}, "extra_gated_description": "The information you provide will be collected, stored, processed and shared in accordance with the AgiBot Privacy Policy.", "extra_gated_button_content": "Submit"}
false
null
2025-01-09T02:59:03
160
10
false
53f3739cc041164023f988d7c7b98f6af3f0d2c0
Key Features πŸ”‘ 1 million+ trajectories from 100 robots. 100+ real-world scenarios across 5 target domains. Cutting-edge hardware: visual tactile sensors / 6-DoF dexterous hand / mobile dual-arm robots Tasks involving: Contact-rich manipulation Long-horizon planning Multi-robot collaboration Your browser does not support the video tag. Your browser does not support the video tag.… See the full description on the dataset page: https://huggingface.co/datasets/agibot-world/AgiBotWorld-Alpha.
11,482
[ "task_categories:other", "language:en", "size_categories:10M<n<100M", "format:webdataset", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us", "real-world", "dual-arm", "Robotics manipulation" ]
2024-12-19T09:37:11
null
null
677fdc0944145aefa9e3ca88
atlasia/TerjamaBench
atlasia
{"dataset_info": {"features": [{"name": "topic", "dtype": "string"}, {"name": "subtopic", "dtype": "string"}, {"name": "Arabizi", "dtype": "string"}, {"name": "English", "dtype": "string"}, {"name": "Darija", "dtype": "string"}, {"name": "annotator_dialect", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 132360, "num_examples": 850}, {"name": "train", "num_bytes": 126518, "num_examples": 850}], "download_size": 140184, "dataset_size": 258878}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}, {"split": "train", "path": "data/train-*"}]}], "license": "mit", "task_categories": ["translation"], "size_categories": ["n<1K"], "language": ["ary", "en"]}
false
null
2025-01-10T18:59:12
10
10
false
8ef552799373b205f12304d63191f3b8bad8b525
TerjamaBench: A Culturally Specific Dataset for Evaluating Translation Models for Moroccan Darija Moroccan Darija, the widely spoken dialect of Arabic in Morocco, is rich in cultural expressions, regional variations, and multilingual influences. Despite its prevalence, there is a lack of robust, culturally relevant datasets for evaluating models on Moroccan Darija, particularly for translation tasks. To address this gap, we introduce TerjamaBench, a dataset specifically… See the full description on the dataset page: https://huggingface.co/datasets/atlasia/TerjamaBench.
131
[ "task_categories:translation", "language:ary", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-09T14:24:09
null
null
649444227853dd12c3bbadd8
Amod/mental_health_counseling_conversations
Amod
{"license": "openrail", "task_categories": ["text-generation", "question-answering"], "language": ["en"], "tags": ["medical"], "size_categories": ["1K<n<10K"]}
false
null
2024-04-05T08:30:03
291
9
false
4672e03c7f1a7b2215eb4302b83ca50449ce2553
Amod/mental_health_counseling_conversations Dataset Summary This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. The dataset is intended to be used for fine-tuning language models to improve their ability to provide mental health advice. Supported Tasks and Leaderboards The… See the full description on the dataset page: https://huggingface.co/datasets/Amod/mental_health_counseling_conversations.
3,182
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:openrail", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1581", "region:us", "medical" ]
2023-06-22T12:52:50
null
null
674dc01bf413e32210acb235
Rapidata/human-style-preferences-images
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "votes_image1", "dtype": "int64"}, {"name": "votes_image2", "dtype": "int64"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}, {"name": "image1_path", "dtype": "string"}, {"name": "image2_path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26229461236, "num_examples": 63752}], "download_size": 17935847407, "dataset_size": 26229461236}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cdla-permissive-2.0", "task_categories": ["text-to-image", "image-to-text", "image-classification", "reinforcement-learning"], "language": ["en"], "tags": ["Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3"], "size_categories": ["100K<n<1M"], "pretty_name": "imagen-3 vs. Flux-1.1-pro vs. Flux-1-pro vs. Dalle-3 vs. Midjourney-5.2 vs. Stabel-Diffusion-3 - Human Preference Dataset"}
false
null
2025-01-10T21:59:31
13
9
false
79acd5ebcc535309c08d996ab1f88c01077a7b12
Rapidata Image Generation Preference Dataset This dataset was collected in ~4 Days using the Rapidata Python API, accessible to anyone and ideal for large scale data annotation. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the future, please consider liking it. Overview One of the largest human preference datasets for text-to-image models, this release contains over 1,200,000 human… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/human-style-preferences-images.
1,012
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-classification", "task_categories:reinforcement-learning", "language:en", "license:cdla-permissive-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3" ]
2024-12-02T14:11:39
null
null
674dc95c4c48b2c004b3b48f
Rapidata/human-alignment-preferences-images
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "votes_image1", "dtype": "int64"}, {"name": "votes_image2", "dtype": "int64"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}, {"name": "image1_path", "dtype": "string"}, {"name": "image2_path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26216657746.75, "num_examples": 63721}], "download_size": 17892218611, "dataset_size": 26216657746.75}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cdla-permissive-2.0", "task_categories": ["text-to-image", "image-to-text", "reinforcement-learning", "question-answering"], "language": ["en"], "tags": ["Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3"], "size_categories": ["1M<n<10M"], "pretty_name": "imagen-3 vs. Flux-1.1-pro vs. Flux-1-pro vs. Dalle-3 vs. Midjourney-5.2 vs. Stabel-Diffusion-3 - Human Alignment Dataset"}
false
null
2025-01-10T22:00:00
11
9
false
804b92da58d614265377f9983d6715ef3bbb4d36
Rapidata Image Generation Alignment Dataset This dataset was collected in ~4 Days using the Rapidata Python API, accessible to anyone and ideal for large scale data annotation. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the future, please consider liking it. Overview One of the largest human annotated alignment datasets for text-to-image models, this release contains over 1,200,000 human… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/human-alignment-preferences-images.
859
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:reinforcement-learning", "task_categories:question-answering", "language:en", "license:cdla-permissive-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3" ]
2024-12-02T14:51:08
null
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-03T11:58:46
1,819
8
false
e31fdfd3918d4b48e837d69d274e624a067d7091
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of πŸ¦… RefinedWeb, with a release of the full… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
181,092
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
674dc4e248045e1aed1baa45
Rapidata/human-coherence-preferences-images
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "votes_image1", "dtype": "int64"}, {"name": "votes_image2", "dtype": "int64"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}, {"name": "image1_path", "dtype": "string"}, {"name": "image2_path", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 26233103274, "num_examples": 63748}], "download_size": 17836409651, "dataset_size": 26233103274}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cdla-permissive-2.0", "task_categories": ["text-to-image", "image-to-text", "question-answering", "reinforcement-learning"], "language": ["en"], "tags": ["Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3"], "size_categories": ["1M<n<10M"], "pretty_name": "imagen-3 vs. Flux-1.1-pro vs. Flux-1-pro vs. Dalle-3 vs. Midjourney-5.2 vs. Stabel-Diffusion-3 - Human Coherence Dataset"}
false
null
2025-01-10T22:00:32
11
8
false
72c0ebefc7ef3bebe22643fc709a6e94c22b5b02
Rapidata Image Generation Coherence Dataset This dataset was collected in ~4 Days using the Rapidata Python API, accessible to anyone and ideal for large scale data annotation. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the future, please consider liking it. Overview One of the largest human annotated coherence datasets for text-to-image models, this release contains over 1,200,000 human… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/human-coherence-preferences-images.
689
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:question-answering", "task_categories:reinforcement-learning", "language:en", "license:cdla-permissive-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Human", "Preference", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3" ]
2024-12-02T14:32:02
null
null
6760406f6205e9e0d914a8ec
Rapidata/open-image-preferences-v1-more-results
Rapidata
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "images", "dtype": "string"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "evolution", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "subcategory", "dtype": "string"}, {"name": "preference_responses", "dtype": "string"}, {"name": "aggregated_results", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5021577028, "num_examples": 17192}], "download_size": 4990459921, "dataset_size": 5021577028}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-to-image", "image-to-text"], "language": ["en"], "tags": ["preference", "vlm", "flux", "stable-diffusion", "synthetic", "distilabel"], "pretty_name": "Open Image Preferences - More Results", "size_categories": ["100K<n<1M"]}
false
null
2025-01-10T22:04:22
11
8
false
a5ced45e9d1f848d1d7dc1e87c0a4ece3a81799e
We wanted to contribute to the challenge posed by the data-is-better-together community (description below). We collected 170'000 preferences using our API from people all around the world in rougly 3 days (docs.rapidata.ai): If you get value from this dataset and would like to see more in the future, please consider liking it. Dataset Card for image-preferences-results Original Prompt: Anime-style concept art of a Mayan Quetzalcoatl biomutant, dystopian world… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/open-image-preferences-v1-more-results.
656
[ "task_categories:text-to-image", "task_categories:image-to-text", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "preference", "vlm", "flux", "stable-diffusion", "synthetic", "distilabel" ]
2024-12-16T14:59:59
null
null
6760cf1c46ba6c841069988a
O1-OPEN/OpenO1-SFT-Ultra
O1-OPEN
null
false
null
2024-12-17T02:32:42
46
8
false
2762ca378dbb954419b053fa347835d14a0379a8
openo1-sft-ultra-35m-data Instruction We have released the openo1-sft-ultra-35m-data, which contains 35 million data points. It is based on existing open-source datasets and synthesized using the openo1-qwen-sft model. We first collected open-source datasets and then annotated the data based on difficulty, quality, and question types using the qwen-2.5-72b-instruct model. To ensure the difficulty and quality of the data, we only retained data where both the… See the full description on the dataset page: https://huggingface.co/datasets/O1-OPEN/OpenO1-SFT-Ultra.
1,074
[ "size_categories:10M<n<100M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-12-17T01:08:44
null
null
67744720363e2be467b7c2b5
qingy2024/FineQwQ-142k
qingy2024
{"language": ["en"], "dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "source", "dtype": "string"}], "splits": [{"name": "10k", "num_bytes": 87273156.45129532, "num_examples": 10000}, {"name": "25k", "num_bytes": 218182891.12823832, "num_examples": 25000}, {"name": "50k", "num_bytes": 436365782.25647664, "num_examples": 50000}, {"name": "100k", "num_bytes": 872731564.5129533, "num_examples": 100000}, {"name": "142k", "num_bytes": 1239278821.6083937, "num_examples": 142000}], "download_size": 1265768860, "dataset_size": 2853832215.9573574}, "configs": [{"config_name": "default", "data_files": [{"split": "10k", "path": "data/10k-*"}, {"split": "25k", "path": "data/25k-*"}, {"split": "50k", "path": "data/50k-*"}, {"split": "100k", "path": "data/100k-*"}, {"split": "142k", "path": "data/142k-*"}]}]}
false
null
2025-01-07T18:00:44
16
8
false
f7443bb54d207f590a5d13924c80c9eacfd66fe1
Shakker-Labs/FLUX.1-dev-LoRA-Logo-Design Original Sources: qingy2024/QwQ-LongCoT-Verified-130K (amphora/QwQ-LongCoT-130K), amphora/QwQ-LongCoT-130K-2, PowerInfer/QWQ-LONGCOT-500K. Source Information Rows % powerinfer/qwq-500k Only coding problems kept to avoid overlap 50,899 35.84% qwq-longcot-verified Verified math problems 64,096 45.14% amphora-magpie Diverse general purpose reasoning 27,015 19.02%
775
[ "language:en", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-12-31T19:33:52
null
null
677e02dad71b5f108df18381
permutans/fineweb-bbc-news
permutans
{"dataset_info": [{"config_name": "CC-MAIN-2013-20", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 554836050, "num_examples": 179829}], "download_size": 342273044, "dataset_size": 554836050}, {"config_name": "CC-MAIN-2013-48", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1201156640, "num_examples": 394978}], "download_size": 742585587, "dataset_size": 1201156640}, {"config_name": "CC-MAIN-2014-10", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1224875616, "num_examples": 405967}], "download_size": 757458265, "dataset_size": 1224875616}, {"config_name": "CC-MAIN-2014-15", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 899256194, "num_examples": 295272}], "download_size": 555731673, "dataset_size": 899256194}, {"config_name": "CC-MAIN-2014-23", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1222018466, "num_examples": 409959}], "download_size": 755291616, "dataset_size": 1222018466}, {"config_name": "CC-MAIN-2014-35", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1224453287, "num_examples": 410024}], "download_size": 757204790, "dataset_size": 1224453287}, {"config_name": "CC-MAIN-2014-41", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1290562434, "num_examples": 434595}], "download_size": 797966297, "dataset_size": 1290562434}, {"config_name": "CC-MAIN-2014-42", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 794224491, "num_examples": 266235}], "download_size": 491503599, "dataset_size": 794224491}, {"config_name": "CC-MAIN-2014-49", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 620570132, "num_examples": 208198}], "download_size": 383929848, "dataset_size": 620570132}, {"config_name": "CC-MAIN-2014-52", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1263943807, "num_examples": 426622}], "download_size": 781692434, "dataset_size": 1263943807}, {"config_name": "CC-MAIN-2015-06", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1112197415, "num_examples": 371702}], "download_size": 687448565, "dataset_size": 1112197415}, {"config_name": "CC-MAIN-2015-11", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1009534704, "num_examples": 339287}], "download_size": 624397646, "dataset_size": 1009534704}, {"config_name": "CC-MAIN-2015-14", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 792929439, "num_examples": 277087}], "download_size": 491268787, "dataset_size": 792929439}, {"config_name": "CC-MAIN-2015-18", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1203133602, "num_examples": 413268}], "download_size": 744925938, "dataset_size": 1203133602}, {"config_name": "CC-MAIN-2015-22", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1272124604, "num_examples": 436181}], "download_size": 787529038, "dataset_size": 1272124604}, {"config_name": "CC-MAIN-2015-27", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1049634533, "num_examples": 358885}], "download_size": 649837123, "dataset_size": 1049634533}, {"config_name": "CC-MAIN-2015-32", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1234217263, "num_examples": 422596}], "download_size": 764037693, "dataset_size": 1234217263}, {"config_name": "CC-MAIN-2015-35", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1226360925, "num_examples": 419640}], "download_size": 759126799, "dataset_size": 1226360925}, {"config_name": "CC-MAIN-2015-40", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 780341398, "num_examples": 265078}], "download_size": 482899300, "dataset_size": 780341398}, {"config_name": "CC-MAIN-2015-48", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1170798600, "num_examples": 398074}], "download_size": 724744355, "dataset_size": 1170798600}, {"config_name": "CC-MAIN-2016-07", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1129331773, "num_examples": 385458}], "download_size": 699454274, "dataset_size": 1129331773}, {"config_name": "CC-MAIN-2016-18", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 921310770, "num_examples": 300127}], "download_size": 570138559, "dataset_size": 921310770}, {"config_name": "CC-MAIN-2016-22", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 935745864, "num_examples": 304515}], "download_size": 579411139, "dataset_size": 935745864}, {"config_name": "CC-MAIN-2016-26", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1073970058, "num_examples": 346842}], "download_size": 664356910, "dataset_size": 1073970058}, {"config_name": "CC-MAIN-2016-30", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1194043863, "num_examples": 404091}], "download_size": 739451555, "dataset_size": 1194043863}, {"config_name": "CC-MAIN-2016-36", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1239176743, "num_examples": 400199}], "download_size": 766906110, "dataset_size": 1239176743}, {"config_name": "CC-MAIN-2016-40", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1254911984, "num_examples": 405529}], "download_size": 776702747, "dataset_size": 1254911984}, {"config_name": "CC-MAIN-2016-44", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1154319724, "num_examples": 380138}], "download_size": 715473499, "dataset_size": 1154319724}, {"config_name": "CC-MAIN-2016-50", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1092827592, "num_examples": 357533}], "download_size": 677336827, "dataset_size": 1092827592}, {"config_name": "CC-MAIN-2017-04", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1051460663, "num_examples": 346540}], "download_size": 651859227, "dataset_size": 1051460663}, {"config_name": "CC-MAIN-2017-13", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 981054960, "num_examples": 321266}], "download_size": 608439933, "dataset_size": 981054960}, {"config_name": "CC-MAIN-2017-17", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 915656329, "num_examples": 297048}], "download_size": 568144777, "dataset_size": 915656329}, {"config_name": "CC-MAIN-2017-26", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 572548031, "num_examples": 187329}], "download_size": 355962593, "dataset_size": 572548031}, {"config_name": "CC-MAIN-2017-30", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 509722675, "num_examples": 176278}], "download_size": 317713692, "dataset_size": 509722675}, {"config_name": "CC-MAIN-2017-34", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 466160925, "num_examples": 155458}], "download_size": 290091701, "dataset_size": 466160925}, {"config_name": "CC-MAIN-2017-39", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 335206024, "num_examples": 141214}], "download_size": 208478249, "dataset_size": 335206024}, {"config_name": "CC-MAIN-2017-43", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 276761277, "num_examples": 112349}], "download_size": 172196928, "dataset_size": 276761277}, {"config_name": "CC-MAIN-2017-51", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 87883160, "num_examples": 43473}], "download_size": 54347764, "dataset_size": 87883160}, {"config_name": "CC-MAIN-2018-05", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 124475883, "num_examples": 56428}], "download_size": 77414773, "dataset_size": 124475883}, {"config_name": "CC-MAIN-2024-33", "features": [{"name": "url", "dtype": "null"}, {"name": "text", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 0, "num_examples": 0}], "download_size": 702, "dataset_size": 0}, {"config_name": "CC-MAIN-2024-46", "features": [{"name": "url", "dtype": "null"}, {"name": "text", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 0, "num_examples": 0}], "download_size": 702, "dataset_size": 0}, {"config_name": "CC-MAIN-2024-51", "features": [{"name": "url", "dtype": "null"}, {"name": "text", "dtype": "null"}], "splits": [{"name": "train", "num_bytes": 0, "num_examples": 0}], "download_size": 702, "dataset_size": 0}, {"config_name": "sample-100BT", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 294609731, "num_examples": 99643}], "download_size": 182805900, "dataset_size": 294609731}, {"config_name": "sample-10BT", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 29594151, "num_examples": 9884}], "download_size": 18373460, "dataset_size": 29594151}, {"config_name": "sample-350BT", "features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1041478873, "num_examples": 352549}], "download_size": 646136439, "dataset_size": 1041478873}], "configs": [{"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "CC-MAIN-2013-20/train-*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "CC-MAIN-2013-48/train-*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "CC-MAIN-2014-10/train-*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "CC-MAIN-2014-15/train-*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "CC-MAIN-2014-23/train-*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "CC-MAIN-2014-35/train-*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "CC-MAIN-2014-41/train-*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "CC-MAIN-2014-42/train-*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "CC-MAIN-2014-49/train-*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "CC-MAIN-2014-52/train-*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "CC-MAIN-2015-06/train-*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "CC-MAIN-2015-11/train-*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "CC-MAIN-2015-14/train-*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "CC-MAIN-2015-18/train-*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "CC-MAIN-2015-22/train-*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "CC-MAIN-2015-27/train-*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "CC-MAIN-2015-32/train-*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "CC-MAIN-2015-35/train-*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "CC-MAIN-2015-40/train-*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "CC-MAIN-2015-48/train-*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "CC-MAIN-2016-07/train-*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "CC-MAIN-2016-18/train-*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "CC-MAIN-2016-22/train-*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "CC-MAIN-2016-26/train-*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "CC-MAIN-2016-30/train-*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "CC-MAIN-2016-36/train-*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "CC-MAIN-2016-40/train-*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "CC-MAIN-2016-44/train-*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "CC-MAIN-2016-50/train-*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "CC-MAIN-2017-04/train-*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "CC-MAIN-2017-13/train-*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "CC-MAIN-2017-17/train-*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "CC-MAIN-2017-26/train-*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "CC-MAIN-2017-30/train-*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "CC-MAIN-2017-34/train-*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "CC-MAIN-2017-39/train-*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "CC-MAIN-2017-43/train-*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "CC-MAIN-2017-51/train-*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "CC-MAIN-2018-05/train-*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "CC-MAIN-2024-33/train-*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "CC-MAIN-2024-46/train-*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "CC-MAIN-2024-51/train-*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample-100BT/train-*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample-10BT/train-*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample-350BT/train-*"}]}], "license": "odc-by", "language": ["en"], "tags": ["news", "fineweb"], "pretty_name": "FineWeb BBC News", "size_categories": ["1M<n<10M"]}
false
null
2025-01-14T23:55:32
8
8
false
5b14c5e10efd1c2103d1b425ac06876021258bc2
Dataset Card for BBC News from FineWeb This dataset provides a filtered subset of BBC News articles from each subset of the FineWeb dataset, expected to contain approximately 300M articles from BBC News domains. Dataset Details Dataset Sources Repository: https://huggingface.co/datasets/permutans/fineweb-bbc-news Source Dataset: HuggingFaceFW/fineweb Paper: https://arxiv.org/abs/2406.17557 (FineWeb paper) Uses Direct Use… See the full description on the dataset page: https://huggingface.co/datasets/permutans/fineweb-bbc-news.
1,721
[ "language:en", "license:odc-by", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.17557", "region:us", "news", "fineweb" ]
2025-01-08T04:45:14
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
485
7
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ βˆ’ Γ—Γ·) to… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
163,162
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
65fc5a783bc54054aa2e6e62
gretelai/synthetic_text_to_sql
gretelai
{"license": "apache-2.0", "task_categories": ["question-answering", "table-question-answering", "text-generation"], "language": ["en"], "tags": ["synthetic", "SQL", "text-to-SQL", "code"], "size_categories": ["100K<n<1M"]}
false
null
2024-05-10T22:30:56
447
7
false
273a86f5f290e8d61b6767a9ff690c82bc990dc4
Image generated by DALL-E. See prompt for more details synthetic_text_to_sql gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. Please see our release blogpost for more details. The dataset includes: 105,851 records partitioned into 100,000 train and 5,851 test records ~23M total tokens, including ~12M SQL tokens Coverage across 100 distinct… See the full description on the dataset page: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql.
1,485
[ "task_categories:question-answering", "task_categories:table-question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2306.05685", "region:us", "synthetic", "SQL", "text-to-SQL", "code" ]
2024-03-21T16:04:08
null
null
6655eb19d17e141dcb546ed5
HuggingFaceFW/fineweb-edu
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb-Edu", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}], "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-06T14:45:40
594
7
false
81fd597c805179172da5d94ac803cde08d95683d
πŸ“š FineWeb-Edu 1.3 trillion tokens of the finest educational data the 🌐 web has to offer Paper: https://arxiv.org/abs/2406.17557 What is it? πŸ“š FineWeb-Edu dataset consists of 1.3T tokens and 5.4T tokens (FineWeb-Edu-score-2) of educational web pages filtered from 🍷 FineWeb dataset. This is the 1.3 trillion version. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by LLama3-70B-Instruct. We… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
147,702
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.17557", "arxiv:2404.14219", "arxiv:2401.10020", "arxiv:2109.07445", "doi:10.57967/hf/2497", "region:us" ]
2024-05-28T14:32:57
null
null
66a53dc7d40a13036c5f2ebe
mlabonne/FineTome-100k
mlabonne
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "source", "dtype": "string"}, {"name": "score", "dtype": "float64"}], "splits": [{"name": "train", "num_bytes": 239650960.7474458, "num_examples": 100000}], "download_size": 116531415, "dataset_size": 239650960.7474458}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2024-07-29T09:52:30
149
7
false
c2343c1372ff31f51aa21248db18bffa3193efdb
FineTome-100k The FineTome dataset is a subset of arcee-ai/The-Tome (without arcee-ai/qwen2-72b-magpie-en), re-filtered using HuggingFaceFW/fineweb-edu-classifier. It was made for my article "Fine-tune Llama 3.1 Ultra-Efficiently with Unsloth".
9,250
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-07-27T18:34:47
null
null
66b5d7e4fadf33f0d54db784
microsoft/PEACE
microsoft
{"license": "mit", "task_categories": ["question-answering"], "language": ["en"], "tags": ["geology", "geologic_map", "benchmark"], "configs": [{"config_name": "default", "data_files": [{"split": "full", "path": ["usgs_qas.csv", "cgs_qas.csv"]}, {"split": "usgs", "path": "usgs_qas.csv"}, {"split": "cgs", "path": "cgs_qas.csv"}]}], "pretty_name": "GeoMap-Bench", "size_categories": ["1K<n<10K"], "viewer": true}
false
null
2025-01-10T14:10:09
7
7
false
186bf40f140bdc7cd6f21dea8f61832e708bc6ac
PEACE: Empowering Geologic Map Holistic Understanding with MLLMs [Code] [Paper] [Data] Introduction We construct a geologic map benchmark, GeoMap-Bench, to evaluate the performance of MLLMs on geologic map understanding across different abilities, the overview of it is as shown in below Table. Property Description Source USGS(English) CGS(Chinese) Content Image-question… See the full description on the dataset page: https://huggingface.co/datasets/microsoft/PEACE.
223
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "geology", "geologic_map", "benchmark" ]
2024-08-09T08:48:36
null
null
67162ffb3155cb90a534be53
Rapidata/image-preference-demo
Rapidata
{"language": ["en"], "size_categories": ["n<1K"], "pretty_name": "Image dataset for preference aquisition demo", "tags": ["preference", "text-to-image", "flux"], "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "matchups.csv"}]}]}
false
null
2025-01-10T22:06:21
11
7
false
3c4d7fd9da793cfb3cc3651602287e29e4788148
Image dataset for preference aquisition demo This dataset provides the files used to run the example that we use in this blog post to illustrate how easily you can set up and run the annotation process to collect a huge preference dataset using Rapidata's API. The goal is to collect human preferences based on pairwise image matchups. The dataset contains: Generated images: A selection of example images generated using Flux.1 and Stable Diffusion. The images are provided in a… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/image-preference-demo.
290
[ "language:en", "size_categories:n<1K", "format:csv", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "preference", "text-to-image", "flux" ]
2024-10-21T10:42:03
null
null
6734a325be618c1a37a20040
Rapidata/117k_human_coherence_flux1.0_V_flux1.1Blueberry
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "votes_image1", "dtype": "int64"}, {"name": "votes_image2", "dtype": "int64"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "detailed_results", "dtype": "string"}, {"name": "image1_path", "dtype": "string"}, {"name": "image2_path", "dtype": "string"}], "splits": [{"name": "train_0001", "num_bytes": 605226469, "num_examples": 1000}, {"name": "train_0002", "num_bytes": 642274651, "num_examples": 1000}, {"name": "train_0003", "num_bytes": 691292204, "num_examples": 1000}, {"name": "train_0004", "num_bytes": 738469071, "num_examples": 1000}, {"name": "train_0005", "num_bytes": 342763220, "num_examples": 496}], "download_size": 820299961, "dataset_size": 3020025615}, "configs": [{"config_name": "default", "data_files": [{"split": "train_0001", "path": "data/train_0001-*"}, {"split": "train_0002", "path": "data/train_0002-*"}, {"split": "train_0003", "path": "data/train_0003-*"}, {"split": "train_0004", "path": "data/train_0004-*"}, {"split": "train_0005", "path": "data/train_0005-*"}]}], "language": ["en"]}
false
null
2025-01-10T22:05:30
11
7
false
0e768695d5e647708b7931fafa89de91880dddbf
Rapidata Image Generation Alignment Dataset This Dataset is a 1/3 of a 340k human annotation dataset that was split into three modalities: Preference, Coherence, Text-to-Image Alignment. Link to the Preference dataset: https://huggingface.co/datasets/Rapidata/117k_human_preferences_flux1.0_V_flux1.1Blueberry Link to the Text-2-Image Alignment dataset: https://huggingface.co/datasets/Rapidata/117k_human_alignment_flux1.0_V_flux1.1Blueberry It was collected in ~2 Days using… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/117k_human_coherence_flux1.0_V_flux1.1Blueberry.
178
[ "language:en", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2024-11-13T13:01:25
null
null

Hugging Face Hub Stats

Updated Daily

Downloads last month
1,276

Data Sourcing report

powered
by Spawning.ai

No elements in this dataset have been identified as either opted-out, or opted-in, by their creator.

Spaces using cfahlgren1/hub-stats 10