text
stringlengths
3
7.31k
source
stringclasses
40 values
url
stringlengths
53
184
source_section
stringlengths
0
105
file_type
stringclasses
1 value
id
stringlengths
3
6
```python Raised by `hf_raise_for_status` when the server returns a HTTP 400 error. Example: ```py >>> resp = requests.post("hf.co/api/check", ...) >>> hf_raise_for_status(resp, endpoint_name="check") huggingface_hub.utils._errors.BadRequestError: Bad request for check endpoint: {details} (Request ID: XXX) ``` ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#huggingfacehubutilsbadrequesterror
#huggingfacehubutilsbadrequesterror
.md
15_38
```python Raised when trying to access a file or snapshot that is not on the disk when network is disabled or unavailable (connection issue). The entry may exist on the Hub. Note: `ValueError` type is to ensure backward compatibility. Note: `LocalEntryNotFoundError` derives from `HTTPError` because of `EntryNotFoundError` even when it is not a network issue. Example: ```py >>> from huggingface_hub import hf_hub_download >>> hf_hub_download('bert-base-cased', '<non-cached-file>', local_files_only=True) (...) huggingface_hub.utils._errors.LocalEntryNotFoundError: Cannot find the requested files in the disk cache and outgoing traffic has been disabled. To enable hf.co look-ups and downloads online, set 'local_files_only' to False. ``` ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#huggingfacehubutilslocalentrynotfounderror
#huggingfacehubutilslocalentrynotfounderror
.md
15_39
```python Raised when a request is made but `HF_HUB_OFFLINE=1` is set as environment variable. ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#huggingfacehubutilsofflinemodeisenabled
#huggingfacehubutilsofflinemodeisenabled
.md
15_40
`huggingface_hub` includes an helper to send telemetry data. This information helps us debug issues and prioritize new features. Users can disable telemetry collection at any time by setting the `HF_HUB_DISABLE_TELEMETRY=1` environment variable. Telemetry is also disabled in offline mode (i.e. when setting HF_HUB_OFFLINE=1). If you are maintainer of a third-party library, sending telemetry data is as simple as making a call to [`send_telemetry`]. Data is sent in a separate thread to reduce as much as possible the impact for users.
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#telemetry
#telemetry
.md
15_41
Error fetching docstring for utils.send_telemetry: module 'utils' has no attribute 'send_telemetry'
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#utilssendtelemetry
#utilssendtelemetry
.md
15_42
`huggingface_hub` includes custom validators to validate method arguments automatically. Validation is inspired by the work done in [Pydantic](https://pydantic-docs.helpmanual.io/) to validate type hints but with more limited features.
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#validators
#validators
.md
15_43
[`~utils.validate_hf_hub_args`] is a generic decorator to encapsulate methods that have arguments following `huggingface_hub`'s naming. By default, all arguments that has a validator implemented will be validated. If an input is not valid, a [`~utils.HFValidationError`] is thrown. Only the first non-valid value throws an error and stops the validation process. Usage: ```py >>> from huggingface_hub.utils import validate_hf_hub_args >>> @validate_hf_hub_args ... def my_cool_method(repo_id: str): ... print(repo_id) >>> my_cool_method(repo_id="valid_repo_id") valid_repo_id >>> my_cool_method("other..repo..id") huggingface_hub.utils._validators.HFValidationError: Cannot have -- or .. in repo_id: 'other..repo..id'. >>> my_cool_method(repo_id="other..repo..id") huggingface_hub.utils._validators.HFValidationError: Cannot have -- or .. in repo_id: 'other..repo..id'. >>> @validate_hf_hub_args ... def my_cool_auth_method(token: str): ... print(token) >>> my_cool_auth_method(token="a token") "a token" >>> my_cool_auth_method(use_auth_token="a use_auth_token") "a use_auth_token" >>> my_cool_auth_method(token="a token", use_auth_token="a use_auth_token") UserWarning: Both `token` and `use_auth_token` are passed (...). `use_auth_token` value will be ignored. "a token" ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#generic-decorator
#generic-decorator
.md
15_44
Error fetching docstring for utils.validate_hf_hub_args: module 'utils' has no attribute 'validate_hf_hub_args'
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#utilsvalidatehfhubargs
#utilsvalidatehfhubargs
.md
15_45
Error fetching docstring for utils.HFValidationError: module 'utils' has no attribute 'HFValidationError'
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#utilshfvalidationerror
#utilshfvalidationerror
.md
15_46
Validators can also be used individually. Here is a list of all arguments that can be validated.
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#argument-validators
#argument-validators
.md
15_47
Error fetching docstring for utils.validate_repo_id: module 'utils' has no attribute 'validate_repo_id'
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#utilsvalidaterepoid
#utilsvalidaterepoid
.md
15_48
Not exactly a validator, but ran as well.
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#smoothlydeprecateuseauthtoken
#smoothlydeprecateuseauthtoken
.md
15_49
Error fetching docstring for utils.smoothly_deprecate_use_auth_token: module 'utils' has no attribute 'smoothly_deprecate_use_auth_token'
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/utilities.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/utilities/#utilssmoothlydeprecateuseauthtoken
#utilssmoothlydeprecateuseauthtoken
.md
15_50
<!--⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/space_runtime.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/space_runtime/
.md
16_0
Check the [`HfApi`] documentation page for the reference of methods to manage your Space on the Hub. - Duplicate a Space: [`duplicate_space`] - Fetch current runtime: [`get_space_runtime`] - Manage secrets: [`add_space_secret`] and [`delete_space_secret`] - Manage hardware: [`request_space_hardware`] - Manage state: [`pause_space`], [`restart_space`], [`set_space_sleep_time`]
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/space_runtime.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/space_runtime/#managing-your-space-runtime
#managing-your-space-runtime
.md
16_1
```python Contains information about the current runtime of a Space. Args: stage (`str`): Current stage of the space. Example: RUNNING. hardware (`str` or `None`): Current hardware of the space. Example: "cpu-basic". Can be `None` if Space is `BUILDING` for the first time. requested_hardware (`str` or `None`): Requested hardware. Can be different than `hardware` especially if the request has just been made. Example: "t4-medium". Can be `None` if no hardware has been requested yet. sleep_time (`int` or `None`): Number of seconds the Space will be kept alive after the last request. By default (if value is `None`), the Space will never go to sleep if it's running on an upgraded hardware, while it will go to sleep after 48 hours on a free 'cpu-basic' hardware. For more details, see https://huggingface.co/docs/hub/spaces-gpus#sleep-time. raw (`dict`): Raw response from the server. Contains more information about the Space runtime like number of replicas, number of cpu, memory size,... ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/space_runtime.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/space_runtime/#spaceruntime
#spaceruntime
.md
16_2
```python Enumeration of hardwares available to run your Space on the Hub. Value can be compared to a string: ```py assert SpaceHardware.CPU_BASIC == "cpu-basic" ``` Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L73 (private url). ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/space_runtime.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/space_runtime/#spacehardware
#spacehardware
.md
16_3
```python Enumeration of possible stage of a Space on the Hub. Value can be compared to a string: ```py assert SpaceStage.BUILDING == "BUILDING" ``` Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceInfo.ts#L61 (private url). ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/space_runtime.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/space_runtime/#spacestage
#spacestage
.md
16_4
```python Enumeration of persistent storage available for your Space on the Hub. Value can be compared to a string: ```py assert SpaceStorage.SMALL == "small" ``` Taken from https://github.com/huggingface/moon-landing/blob/main/server/repo_types/SpaceHardwareFlavor.ts#L24 (private url). ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/space_runtime.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/space_runtime/#spacestorage
#spacestorage
.md
16_5
```python Contains information about the current variables of a Space. Args: key (`str`): Variable key. Example: `"MODEL_REPO_ID"` value (`str`): Variable value. Example: `"the_model_repo_id"`. description (`str` or None): Description of the variable. Example: `"Model Repo ID of the implemented model"`. updatedAt (`datetime` or None): datetime of the last update of the variable (if the variable has been updated at least once). ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/space_runtime.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/space_runtime/#spacevariable
#spacevariable
.md
16_6
<!--⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/
.md
17_0
Webhooks are a foundation for MLOps-related features. They allow you to listen for new changes on specific repos or to all repos belonging to particular users/organizations you're interested in following. To learn more about webhooks on the Huggingface Hub, you can read the Webhooks [guide](https://huggingface.co/docs/hub/webhooks). <Tip> Check out this [guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your webhooks server and deploy it as a Space. </Tip> <Tip warning={true}> This is an experimental feature. This means that we are still working on improving the API. Breaking changes might be introduced in the future without prior notice. Make sure to pin the version of `huggingface_hub` in your requirements. A warning is triggered when you use an experimental feature. You can disable it by setting `HF_HUB_DISABLE_EXPERIMENTAL_WARNING=1` as an environment variable. </Tip>
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#webhooks-server
#webhooks-server
.md
17_1
The server is a [Gradio](https://gradio.app/) app. It has a UI to display instructions for you or your users and an API to listen to webhooks. Implementing a webhook endpoint is as simple as decorating a function. You can then debug it by redirecting the Webhooks to your machine (using a Gradio tunnel) before deploying it to a Space.
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#server
#server
.md
17_2
```python The [`WebhooksServer`] class lets you create an instance of a Gradio app that can receive Huggingface webhooks. These webhooks can be registered using the [`~WebhooksServer.add_webhook`] decorator. Webhook endpoints are added to the app as a POST endpoint to the FastAPI router. Once all the webhooks are registered, the `launch` method has to be called to start the app. It is recommended to accept [`WebhookPayload`] as the first argument of the webhook function. It is a Pydantic model that contains all the information about the webhook event. The data will be parsed automatically for you. Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your WebhooksServer and deploy it on a Space. <Tip warning={true}> `WebhooksServer` is experimental. Its API is subject to change in the future. </Tip> <Tip warning={true}> You must have `gradio` installed to use `WebhooksServer` (`pip install --upgrade gradio`). </Tip> Args: ui (`gradio.Blocks`, optional): A Gradio UI instance to be used as the Space landing page. If `None`, a UI displaying instructions about the configured webhooks is created. webhook_secret (`str`, optional): A secret key to verify incoming webhook requests. You can set this value to any secret you want as long as you also configure it in your [webhooks settings panel](https://huggingface.co/settings/webhooks). You can also set this value as the `WEBHOOK_SECRET` environment variable. If no secret is provided, the webhook endpoints are opened without any security. Example: ```python import gradio as gr from huggingface_hub import WebhooksServer, WebhookPayload with gr.Blocks() as ui: ... app = WebhooksServer(ui=ui, webhook_secret="my_secret_key") @app.add_webhook("/say_hello") async def hello(payload: WebhookPayload): return {"message": "hello"} app.launch() ``` ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhooksserver
#huggingfacehubwebhooksserver
.md
17_3
```python Decorator to start a [`WebhooksServer`] and register the decorated function as a webhook endpoint. This is a helper to get started quickly. If you need more flexibility (custom landing page or webhook secret), you can use [`WebhooksServer`] directly. You can register multiple webhook endpoints (to the same server) by using this decorator multiple times. Check out the [webhooks guide](../guides/webhooks_server) for a step-by-step tutorial on how to setup your server and deploy it on a Space. <Tip warning={true}> `webhook_endpoint` is experimental. Its API is subject to change in the future. </Tip> <Tip warning={true}> You must have `gradio` installed to use `webhook_endpoint` (`pip install --upgrade gradio`). </Tip> Args: path (`str`, optional): The URL path to register the webhook function. If not provided, the function name will be used as the path. In any case, all webhooks are registered under `/webhooks`. Examples: The default usage is to register a function as a webhook endpoint. The function name will be used as the path. The server will be started automatically at exit (i.e. at the end of the script). ```python from huggingface_hub import webhook_endpoint, WebhookPayload @webhook_endpoint async def trigger_training(payload: WebhookPayload): if payload.repo.type == "dataset" and payload.event.action == "update":
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookendpoint
#huggingfacehubwebhookendpoint
.md
17_4
...
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#trigger-a-training-job-if-a-dataset-is-updated
#trigger-a-training-job-if-a-dataset-is-updated
.md
17_5
``` Advanced usage: register a function as a webhook endpoint and start the server manually. This is useful if you are running it in a notebook. ```python from huggingface_hub import webhook_endpoint, WebhookPayload @webhook_endpoint async def trigger_training(payload: WebhookPayload): if payload.repo.type == "dataset" and payload.event.action == "update":
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#server-is-automatically-started-at-the-end-of-the-script
#server-is-automatically-started-at-the-end-of-the-script
.md
17_6
...
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#trigger-a-training-job-if-a-dataset-is-updated
#trigger-a-training-job-if-a-dataset-is-updated
.md
17_7
trigger_training.launch() ``` ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#start-the-server-manually
#start-the-server-manually
.md
17_8
[`WebhookPayload`] is the main data structure that contains the payload from Webhooks. This is a `pydantic` class which makes it very easy to use with FastAPI. If you pass it as a parameter to a webhook endpoint, it will be automatically validated and parsed as a Python object. For more information about webhooks payload, you can refer to the Webhooks Payload [guide](https://huggingface.co/docs/hub/webhooks#webhook-payloads).
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#payload
#payload
.md
17_9
No docstring found for huggingface_hub.WebhookPayload No docstring found for huggingface_hub.WebhookPayload
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayload
#huggingfacehubwebhookpayload
.md
17_10
No docstring found for huggingface_hub.WebhookPayloadComment
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloadcomment
#huggingfacehubwebhookpayloadcomment
.md
17_11
No docstring found for huggingface_hub.WebhookPayloadDiscussion
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloaddiscussion
#huggingfacehubwebhookpayloaddiscussion
.md
17_12
No docstring found for huggingface_hub.WebhookPayloadDiscussionChanges
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloaddiscussionchanges
#huggingfacehubwebhookpayloaddiscussionchanges
.md
17_13
No docstring found for huggingface_hub.WebhookPayloadEvent
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloadevent
#huggingfacehubwebhookpayloadevent
.md
17_14
No docstring found for huggingface_hub.WebhookPayloadMovedTo
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloadmovedto
#huggingfacehubwebhookpayloadmovedto
.md
17_15
No docstring found for huggingface_hub.WebhookPayloadRepo
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloadrepo
#huggingfacehubwebhookpayloadrepo
.md
17_16
No docstring found for huggingface_hub.WebhookPayloadUrl
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloadurl
#huggingfacehubwebhookpayloadurl
.md
17_17
No docstring found for huggingface_hub.WebhookPayloadWebhook
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/webhooks_server.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/webhooks_server/#huggingfacehubwebhookpayloadwebhook
#huggingfacehubwebhookpayloadwebhook
.md
17_18
<!--⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. -->
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/
.md
18_0
The `huggingface_hub` library offers a range of mixins that can be used as a parent class for your objects, in order to provide simple uploading and downloading functions. Check out our [integration guide](../guides/integrations) to learn how to integrate any ML framework with the Hub.
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#mixins
#mixins
.md
18_1
```python A generic mixin to integrate ANY machine learning framework with the Hub. To integrate your framework, your model class must inherit from this class. Custom logic for saving/loading models have to be overwritten in [`_from_pretrained`] and [`_save_pretrained`]. [`PyTorchModelHubMixin`] is a good example of mixin integration with the Hub. Check out our [integration guide](../guides/integrations) for more instructions. When inheriting from [`ModelHubMixin`], you can define class-level attributes. These attributes are not passed to `__init__` but to the class definition itself. This is useful to define metadata about the library integrating [`ModelHubMixin`]. For more details on how to integrate the mixin with your library, checkout the [integration guide](../guides/integrations). Args: repo_url (`str`, *optional*): URL of the library repository. Used to generate model card. docs_url (`str`, *optional*): URL of the library documentation. Used to generate model card. model_card_template (`str`, *optional*): Template of the model card. Used to generate model card. Defaults to a generic template. language (`str` or `List[str]`, *optional*): Language supported by the library. Used to generate model card. library_name (`str`, *optional*): Name of the library integrating ModelHubMixin. Used to generate model card. license (`str`, *optional*): License of the library integrating ModelHubMixin. Used to generate model card. E.g: "apache-2.0" license_name (`str`, *optional*): Name of the library integrating ModelHubMixin. Used to generate model card. Only used if `license` is set to `other`. E.g: "coqui-public-model-license". license_link (`str`, *optional*): URL to the license of the library integrating ModelHubMixin. Used to generate model card. Only used if `license` is set to `other` and `license_name` is set. E.g: "https://coqui.ai/cpml". pipeline_tag (`str`, *optional*): Tag of the pipeline. Used to generate model card. E.g. "text-classification". tags (`List[str]`, *optional*): Tags to be added to the model card. Used to generate model card. E.g. ["x-custom-tag", "arxiv:2304.12244"] coders (`Dict[Type, Tuple[Callable, Callable]]`, *optional*): Dictionary of custom types and their encoders/decoders. Used to encode/decode arguments that are not jsonable by default. E.g dataclasses, argparse.Namespace, OmegaConf, etc. Example: ```python >>> from huggingface_hub import ModelHubMixin
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#modelhubmixin
#modelhubmixin
.md
18_2
>>> class MyCustomModel( ... ModelHubMixin, ... library_name="my-library", ... tags=["x-custom-tag", "arxiv:2304.12244"], ... repo_url="https://github.com/huggingface/my-cool-library", ... docs_url="https://huggingface.co/docs/my-cool-library", ... # ^ optional metadata to generate model card ... ): ... def __init__(self, size: int = 512, device: str = "cpu"): ... # define how to initialize your model ... super().__init__() ... ... ... ... def _save_pretrained(self, save_directory: Path) -> None: ... # define how to serialize your model ... ... ... ... @classmethod ... def from_pretrained( ... cls: Type[T], ... pretrained_model_name_or_path: Union[str, Path], ... *, ... force_download: bool = False, ... resume_download: Optional[bool] = None, ... proxies: Optional[Dict] = None, ... token: Optional[Union[str, bool]] = None, ... cache_dir: Optional[Union[str, Path]] = None, ... local_files_only: bool = False, ... revision: Optional[str] = None, ... **model_kwargs, ... ) -> T: ... # define how to deserialize your model ... ... >>> model = MyCustomModel(size=256, device="gpu")
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#inherit-from-modelhubmixin
#inherit-from-modelhubmixin
.md
18_3
>>> model.save_pretrained("my-awesome-model")
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#save-model-weights-to-local-directory
#save-model-weights-to-local-directory
.md
18_4
>>> model.push_to_hub("my-awesome-model")
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#push-model-weights-to-the-hub
#push-model-weights-to-the-hub
.md
18_5
>>> reloaded_model = MyCustomModel.from_pretrained("username/my-awesome-model") >>> reloaded_model.size 256
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#download-and-initialize-weights-from-the-hub
#download-and-initialize-weights-from-the-hub
.md
18_6
>>> from huggingface_hub import ModelCard >>> card = ModelCard.load("username/my-awesome-model") >>> card.data.tags ["x-custom-tag", "pytorch_model_hub_mixin", "model_hub_mixin"] >>> card.data.library_name "my-library" ``` ``` - all - _save_pretrained - _from_pretrained
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#model-card-has-been-correctly-populated
#model-card-has-been-correctly-populated
.md
18_7
```python Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to PyTorch models. The model is set in evaluation mode by default using `model.eval()` (dropout modules are deactivated). To train the model, you should first set it back in training mode with `model.train()`. See [`ModelHubMixin`] for more details on how to use the mixin. Example: ```python >>> import torch >>> import torch.nn as nn >>> from huggingface_hub import PyTorchModelHubMixin >>> class MyModel( ... nn.Module, ... PyTorchModelHubMixin, ... library_name="keras-nlp", ... repo_url="https://github.com/keras-team/keras-nlp", ... docs_url="https://keras.io/keras_nlp/", ... # ^ optional metadata to generate model card ... ): ... def __init__(self, hidden_size: int = 512, vocab_size: int = 30000, output_size: int = 4): ... super().__init__() ... self.param = nn.Parameter(torch.rand(hidden_size, vocab_size)) ... self.linear = nn.Linear(output_size, vocab_size) ... def forward(self, x): ... return self.linear(x + self.param) >>> model = MyModel(hidden_size=256)
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#pytorchmodelhubmixin
#pytorchmodelhubmixin
.md
18_8
>>> model.save_pretrained("my-awesome-model")
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#save-model-weights-to-local-directory
#save-model-weights-to-local-directory
.md
18_9
>>> model.push_to_hub("my-awesome-model")
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#push-model-weights-to-the-hub
#push-model-weights-to-the-hub
.md
18_10
>>> model = MyModel.from_pretrained("username/my-awesome-model") >>> model.hidden_size 256 ``` ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#download-and-initialize-weights-from-the-hub
#download-and-initialize-weights-from-the-hub
.md
18_11
```python Implementation of [`ModelHubMixin`] to provide model Hub upload/download capabilities to Keras models. ```python >>> import tensorflow as tf >>> from huggingface_hub import KerasModelHubMixin >>> class MyModel(tf.keras.Model, KerasModelHubMixin): ... def __init__(self, **kwargs): ... super().__init__() ... self.config = kwargs.pop("config", None) ... self.dummy_inputs = ... ... self.layer = ... ... def call(self, *args): ... return ... >>> # Initialize and compile the model as you normally would >>> model = MyModel() >>> model.compile(...) >>> # Build the graph by training it or passing dummy inputs >>> _ = model(model.dummy_inputs) >>> # Save model weights to local directory >>> model.save_pretrained("my-awesome-model") >>> # Push model weights to the Hub >>> model.push_to_hub("my-awesome-model") >>> # Download and initialize weights from the Hub >>> model = MyModel.from_pretrained("username/super-cool-model") ``` ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#kerasmodelhubmixin
#kerasmodelhubmixin
.md
18_12
```python Instantiate a pretrained Keras model from a pre-trained model from the Hub. The model is expected to be in `SavedModel` format. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): Can be either: - A string, the `model id` of a pretrained model hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like `bert-base-uncased`, or namespaced under a user or organization name, like `dbmdz/bert-base-german-cased`. - You can add `revision` by appending `@` at the end of model_id simply like this: `dbmdz/bert-base-german-cased@main` Revision is the specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. - A path to a `directory` containing model weights saved using [`~transformers.PreTrainedModel.save_pretrained`], e.g., `./my_model_directory/`. - `None` if you are both providing the configuration and state dictionary (resp. with keyword arguments `config` and `state_dict`). force_download (`bool`, *optional*, defaults to `False`): Whether to force the (re-)download of the model weights and configuration files, overriding the cached versions if they exist. proxies (`Dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated when running `transformers-cli login` (stored in `~/.huggingface`). cache_dir (`Union[str, os.PathLike]`, *optional*): Path to a directory in which a downloaded pretrained model configuration should be cached if the standard cache should not be used. local_files_only(`bool`, *optional*, defaults to `False`): Whether to only look at local files (i.e., do not try to download the model). model_kwargs (`Dict`, *optional*): model_kwargs will be passed to the model during initialization <Tip> Passing `token=True` is required when you want to use a private model. </Tip> ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#frompretrainedkeras
#frompretrainedkeras
.md
18_13
```python Upload model checkpoint to the Hub. Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more details. Args: model (`Keras.Model`): The [Keras model](`https://www.tensorflow.org/api_docs/python/tf/keras/Model`) you'd like to push to the Hub. The model must be compiled and built. repo_id (`str`): ID of the repository to push to (example: `"username/my-model"`). commit_message (`str`, *optional*, defaults to "Add Keras model"): Message to commit while pushing. private (`bool`, *optional*): Whether the repository created should be private. If `None` (default), the repo will be public unless the organization's default is private. api_endpoint (`str`, *optional*): The API endpoint to use when pushing the model to the hub. token (`str`, *optional*): The token to use as HTTP bearer authorization for remote files. If not set, will use the token set when logging in with `huggingface-cli login` (stored in `~/.huggingface`). branch (`str`, *optional*): The git branch on which to push the model. This defaults to the default branch as specified in your repository, which defaults to `"main"`. create_pr (`boolean`, *optional*): Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`. config (`dict`, *optional*): Configuration object to be saved alongside the model weights. allow_patterns (`List[str]` or `str`, *optional*): If provided, only files matching at least one pattern are pushed. ignore_patterns (`List[str]` or `str`, *optional*): If provided, files matching any of the patterns are not pushed. delete_patterns (`List[str]` or `str`, *optional*): If provided, remote files matching any of the patterns will be deleted from the repo. log_dir (`str`, *optional*): TensorBoard logging directory to be pushed. The Hub automatically hosts and displays a TensorBoard instance if log files are included in the repository. include_optimizer (`bool`, *optional*, defaults to `False`): Whether or not to include optimizer during serialization. tags (Union[`list`, `str`], *optional*): List of tags that are related to model or string of a single tag. See example tags [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). plot_model (`bool`, *optional*, defaults to `True`): Setting this to `True` will plot the model and put it in the model card. Requires graphviz and pydot to be installed. model_save_kwargs(`dict`, *optional*): model_save_kwargs will be passed to [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). Returns: The url of the commit of your model in the given repository. ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#pushtohubkeras
#pushtohubkeras
.md
18_14
```python Saves a Keras model to save_directory in SavedModel format. Use this if you're using the Functional or Sequential APIs. Args: model (`Keras.Model`): The [Keras model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) you'd like to save. The model must be compiled and built. save_directory (`str` or `Path`): Specify directory in which you want to save the Keras model. config (`dict`, *optional*): Configuration object to be saved alongside the model weights. include_optimizer(`bool`, *optional*, defaults to `False`): Whether or not to include optimizer in serialization. plot_model (`bool`, *optional*, defaults to `True`): Setting this to `True` will plot the model and put it in the model card. Requires graphviz and pydot to be installed. tags (Union[`str`,`list`], *optional*): List of tags that are related to model or string of a single tag. See example tags [here](https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1). model_save_kwargs(`dict`, *optional*): model_save_kwargs will be passed to [`tf.keras.models.save_model()`](https://www.tensorflow.org/api_docs/python/tf/keras/models/save_model). ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#savepretrainedkeras
#savepretrainedkeras
.md
18_15
```python Load pretrained fastai model from the Hub or from a local directory. Args: repo_id (`str`): The location where the pickled fastai.Learner is. It can be either of the two: - Hosted on the Hugging Face Hub. E.g.: 'espejelomar/fatai-pet-breeds-classification' or 'distilgpt2'. You can add a `revision` by appending `@` at the end of `repo_id`. E.g.: `dbmdz/bert-base-german-cased@main`. Revision is the specific model version to use. Since we use a git-based system for storing models and other artifacts on the Hugging Face Hub, it can be a branch name, a tag name, or a commit id. - Hosted locally. `repo_id` would be a directory containing the pickle and a pyproject.toml indicating the fastai and fastcore versions used to build the `fastai.Learner`. E.g.: `./my_model_directory/`. revision (`str`, *optional*): Revision at which the repo's files are downloaded. See documentation of `snapshot_download`. Returns: The `fastai.Learner` model in the `repo_id` repo. ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#frompretrainedfastai
#frompretrainedfastai
.md
18_16
```python Upload learner checkpoint files to the Hub. Use `allow_patterns` and `ignore_patterns` to precisely filter which files should be pushed to the hub. Use `delete_patterns` to delete existing remote files in the same commit. See [`upload_folder`] reference for more details. Args: learner (`Learner`): The `fastai.Learner' you'd like to push to the Hub. repo_id (`str`): The repository id for your model in Hub in the format of "namespace/repo_name". The namespace can be your individual account or an organization to which you have write access (for example, 'stanfordnlp/stanza-de'). commit_message (`str`, *optional*): Message to commit while pushing. Will default to :obj:`"add model"`. private (`bool`, *optional*): Whether or not the repository created should be private. If `None` (default), will default to been public except if the organization's default is private. token (`str`, *optional*): The Hugging Face account token to use as HTTP bearer authorization for remote files. If :obj:`None`, the token will be asked by a prompt. config (`dict`, *optional*): Configuration object to be saved alongside the model weights. branch (`str`, *optional*): The git branch on which to push the model. This defaults to the default branch as specified in your repository, which defaults to `"main"`. create_pr (`boolean`, *optional*): Whether or not to create a Pull Request from `branch` with that commit. Defaults to `False`. api_endpoint (`str`, *optional*): The API endpoint to use when pushing the model to the hub. allow_patterns (`List[str]` or `str`, *optional*): If provided, only files matching at least one pattern are pushed. ignore_patterns (`List[str]` or `str`, *optional*): If provided, files matching any of the patterns are not pushed. delete_patterns (`List[str]` or `str`, *optional*): If provided, remote files matching any of the patterns will be deleted from the repo. Returns: The url of the commit of your model in the given repository. <Tip> Raises the following error: - [`ValueError`](https://docs.python.org/3/library/exceptions.html#ValueError) if the user is not log on to the Hugging Face Hub. </Tip> ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/mixins.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/mixins/#pushtohubfastai
#pushtohubfastai
.md
18_17
<!--⚠️ Note that this file is in Markdown but contains specific syntax for our doc-builder (similar to MDX) that may not be rendered properly in your Markdown viewer. --> <!--⚠️ Note that this file is auto-generated by `utils/generate_inference_types.py`. Do not modify it manually.-->
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/
.md
19_0
This page lists the types (e.g. dataclasses) available for each task supported on the Hugging Face Hub. Each task is specified using a JSON schema, and the types are generated from these schemas - with some customization due to Python requirements. Visit [@huggingface.js/tasks](https://github.com/huggingface/huggingface.js/tree/main/packages/tasks/src/tasks) to find the JSON schemas for each task. This part of the lib is still under development and will be improved in future releases.
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#inference-types
#inference-types
.md
19_1
```python Inputs for Audio Classification inference ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubaudioclassificationinput
#huggingfacehubaudioclassificationinput
.md
19_2
```python Outputs for Audio Classification inference ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubaudioclassificationoutputelement
#huggingfacehubaudioclassificationoutputelement
.md
19_3
```python Additional inference parameters for Audio Classification ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubaudioclassificationparameters
#huggingfacehubaudioclassificationparameters
.md
19_4
```python Inputs for Audio to Audio inference ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubaudiotoaudioinput
#huggingfacehubaudiotoaudioinput
.md
19_5
```python Outputs of inference for the Audio To Audio task A generated audio file with its label. ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubaudiotoaudiooutputelement
#huggingfacehubaudiotoaudiooutputelement
.md
19_6
```python Parametrization of the text generation process ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubautomaticspeechrecognitiongenerationparameters
#huggingfacehubautomaticspeechrecognitiongenerationparameters
.md
19_7
```python Inputs for Automatic Speech Recognition inference ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubautomaticspeechrecognitioninput
#huggingfacehubautomaticspeechrecognitioninput
.md
19_8
```python Outputs of inference for the Automatic Speech Recognition task ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubautomaticspeechrecognitionoutput
#huggingfacehubautomaticspeechrecognitionoutput
.md
19_9
```python AutomaticSpeechRecognitionOutputChunk(text: str, timestamps: List[float]) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubautomaticspeechrecognitionoutputchunk
#huggingfacehubautomaticspeechrecognitionoutputchunk
.md
19_10
```python Additional inference parameters for Automatic Speech Recognition ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubautomaticspeechrecognitionparameters
#huggingfacehubautomaticspeechrecognitionparameters
.md
19_11
```python Chat Completion Input. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninput
#huggingfacehubchatcompletioninput
.md
19_12
```python ChatCompletionInputFunctionDefinition(arguments: Any, name: str, description: Optional[str] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputfunctiondefinition
#huggingfacehubchatcompletioninputfunctiondefinition
.md
19_13
```python ChatCompletionInputFunctionName(name: str) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputfunctionname
#huggingfacehubchatcompletioninputfunctionname
.md
19_14
```python ChatCompletionInputGrammarType(type: 'ChatCompletionInputGrammarTypeType', value: Any) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputgrammartype
#huggingfacehubchatcompletioninputgrammartype
.md
19_15
```python ChatCompletionInputMessage(content: Union[List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputMessageChunk], str], role: str, name: Optional[str] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputmessage
#huggingfacehubchatcompletioninputmessage
.md
19_16
```python ChatCompletionInputMessageChunk(type: 'ChatCompletionInputMessageChunkType', image_url: Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputURL] = None, text: Optional[str] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputmessagechunk
#huggingfacehubchatcompletioninputmessagechunk
.md
19_17
```python ChatCompletionInputStreamOptions(include_usage: bool) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputstreamoptions
#huggingfacehubchatcompletioninputstreamoptions
.md
19_18
```python ChatCompletionInputTool(function: huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputFunctionDefinition, type: str) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputtool
#huggingfacehubchatcompletioninputtool
.md
19_19
```python ChatCompletionInputToolChoiceClass(function: huggingface_hub.inference._generated.types.chat_completion.ChatCompletionInputFunctionName) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputtoolchoiceclass
#huggingfacehubchatcompletioninputtoolchoiceclass
.md
19_20
```python ChatCompletionInputURL(url: str) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletioninputurl
#huggingfacehubchatcompletioninputurl
.md
19_21
```python Chat Completion Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutput
#huggingfacehubchatcompletionoutput
.md
19_22
```python ChatCompletionOutputComplete(finish_reason: str, index: int, message: huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputMessage, logprobs: Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputLogprobs] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputcomplete
#huggingfacehubchatcompletionoutputcomplete
.md
19_23
```python ChatCompletionOutputFunctionDefinition(arguments: Any, name: str, description: Optional[str] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputfunctiondefinition
#huggingfacehubchatcompletionoutputfunctiondefinition
.md
19_24
```python ChatCompletionOutputLogprob(logprob: float, token: str, top_logprobs: List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputTopLogprob]) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputlogprob
#huggingfacehubchatcompletionoutputlogprob
.md
19_25
```python ChatCompletionOutputLogprobs(content: List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputLogprob]) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputlogprobs
#huggingfacehubchatcompletionoutputlogprobs
.md
19_26
```python ChatCompletionOutputMessage(role: str, content: Optional[str] = None, tool_calls: Optional[List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputToolCall]] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputmessage
#huggingfacehubchatcompletionoutputmessage
.md
19_27
```python ChatCompletionOutputToolCall(function: huggingface_hub.inference._generated.types.chat_completion.ChatCompletionOutputFunctionDefinition, id: str, type: str) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputtoolcall
#huggingfacehubchatcompletionoutputtoolcall
.md
19_28
```python ChatCompletionOutputTopLogprob(logprob: float, token: str) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputtoplogprob
#huggingfacehubchatcompletionoutputtoplogprob
.md
19_29
```python ChatCompletionOutputUsage(completion_tokens: int, prompt_tokens: int, total_tokens: int) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionoutputusage
#huggingfacehubchatcompletionoutputusage
.md
19_30
```python Chat Completion Stream Output. Auto-generated from TGI specs. For more details, check out https://github.com/huggingface/huggingface.js/blob/main/packages/tasks/scripts/inference-tgi-import.ts. ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutput
#huggingfacehubchatcompletionstreamoutput
.md
19_31
```python ChatCompletionStreamOutputChoice(delta: huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputDelta, index: int, finish_reason: Optional[str] = None, logprobs: Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputLogprobs] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputchoice
#huggingfacehubchatcompletionstreamoutputchoice
.md
19_32
```python ChatCompletionStreamOutputDelta(role: str, content: Optional[str] = None, tool_calls: Optional[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputDeltaToolCall] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputdelta
#huggingfacehubchatcompletionstreamoutputdelta
.md
19_33
```python ChatCompletionStreamOutputDeltaToolCall(function: huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputFunction, id: str, index: int, type: str) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputdeltatoolcall
#huggingfacehubchatcompletionstreamoutputdeltatoolcall
.md
19_34
```python ChatCompletionStreamOutputFunction(arguments: str, name: Optional[str] = None) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputfunction
#huggingfacehubchatcompletionstreamoutputfunction
.md
19_35
```python ChatCompletionStreamOutputLogprob(logprob: float, token: str, top_logprobs: List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputTopLogprob]) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputlogprob
#huggingfacehubchatcompletionstreamoutputlogprob
.md
19_36
```python ChatCompletionStreamOutputLogprobs(content: List[huggingface_hub.inference._generated.types.chat_completion.ChatCompletionStreamOutputLogprob]) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputlogprobs
#huggingfacehubchatcompletionstreamoutputlogprobs
.md
19_37
```python ChatCompletionStreamOutputTopLogprob(logprob: float, token: str) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputtoplogprob
#huggingfacehubchatcompletionstreamoutputtoplogprob
.md
19_38
```python ChatCompletionStreamOutputUsage(completion_tokens: int, prompt_tokens: int, total_tokens: int) ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubchatcompletionstreamoutputusage
#huggingfacehubchatcompletionstreamoutputusage
.md
19_39
```python Inputs for Depth Estimation inference ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubdepthestimationinput
#huggingfacehubdepthestimationinput
.md
19_40
```python Outputs of inference for the Depth Estimation task ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubdepthestimationoutput
#huggingfacehubdepthestimationoutput
.md
19_41
```python Inputs for Document Question Answering inference ```
/Users/nielsrogge/Documents/python_projecten/huggingface_hub/docs/source/en/package_reference/inference_types.md
https://huggingface.co/docs/huggingface_hub/en/package_reference/inference_types/#huggingfacehubdocumentquestionansweringinput
#huggingfacehubdocumentquestionansweringinput
.md
19_42