Diffusers documentation

Text-to-video

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v0.32.2).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

🧪 This pipeline is for research purposes only.

Text-to-video

ModelScope Text-to-Video Technical Report is by Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, Shiwei Zhang.

The abstract from the paper is:

This paper introduces ModelScopeT2V, a text-to-video synthesis model that evolves from a text-to-image synthesis model (i.e., Stable Diffusion). ModelScopeT2V incorporates spatio-temporal blocks to ensure consistent frame generation and smooth movement transitions. The model could adapt to varying frame numbers during training and inference, rendering it suitable for both image-text and video-text datasets. ModelScopeT2V brings together three components (i.e., VQGAN, a text encoder, and a denoising UNet), totally comprising 1.7 billion parameters, in which 0.5 billion parameters are dedicated to temporal capabilities. The model demonstrates superior performance over state-of-the-art methods across three evaluation metrics. The code and an online demo are available at https://modelscope.cn/models/damo/text-to-video-synthesis/summary.

You can find additional information about Text-to-Video on the project page, original codebase, and try it out in a demo. Official checkpoints can be found at damo-vilab and cerspense.

Usage example

text-to-video-ms-1.7b

Let’s start by generating a short video with the default length of 16 frames (2s at 8 fps):

import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video

pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe = pipe.to("cuda")

prompt = "Spiderman is surfing"
video_frames = pipe(prompt).frames[0]
video_path = export_to_video(video_frames)
video_path

Diffusers supports different optimization techniques to improve the latency and memory footprint of a pipeline. Since videos are often more memory-heavy than images, we can enable CPU offloading and VAE slicing to keep the memory footprint at bay.

Let’s generate a video of 8 seconds (64 frames) on the same GPU using CPU offloading and VAE slicing:

import torch
from diffusers import DiffusionPipeline
from diffusers.utils import export_to_video

pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.enable_model_cpu_offload()

# memory optimization
pipe.enable_vae_slicing()

prompt = "Darth Vader surfing a wave"
video_frames = pipe(prompt, num_frames=64).frames[0]
video_path = export_to_video(video_frames)
video_path

It just takes 7 GBs of GPU memory to generate the 64 video frames using PyTorch 2.0, “fp16” precision and the techniques mentioned above.

We can also use a different scheduler easily, using the same method we’d use for Stable Diffusion:

import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video

pipe = DiffusionPipeline.from_pretrained("damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()

prompt = "Spiderman is surfing"
video_frames = pipe(prompt, num_inference_steps=25).frames[0]
video_path = export_to_video(video_frames)
video_path

Here are some sample outputs:

An astronaut riding a horse.
An astronaut riding a horse.
Darth vader surfing in waves.
Darth vader surfing in waves.

cerspense/zeroscope_v2_576w & cerspense/zeroscope_v2_XL

Zeroscope are watermark-free model and have been trained on specific sizes such as 576x320 and 1024x576. One should first generate a video using the lower resolution checkpoint cerspense/zeroscope_v2_576w with TextToVideoSDPipeline, which can then be upscaled using VideoToVideoSDPipeline and cerspense/zeroscope_v2_XL.

import torch
from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
from diffusers.utils import export_to_video
from PIL import Image

pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
pipe.enable_model_cpu_offload()

# memory optimization
pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
pipe.enable_vae_slicing()

prompt = "Darth Vader surfing a wave"
video_frames = pipe(prompt, num_frames=24).frames[0]
video_path = export_to_video(video_frames)
video_path

Now the video can be upscaled:

pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_XL", torch_dtype=torch.float16)
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload()

# memory optimization
pipe.unet.enable_forward_chunking(chunk_size=1, dim=1)
pipe.enable_vae_slicing()

video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]

video_frames = pipe(prompt, video=video, strength=0.6).frames[0]
video_path = export_to_video(video_frames)
video_path

Here are some sample outputs:

Darth vader surfing in waves.
Darth vader surfing in waves.

Tips

Video generation is memory-intensive and one way to reduce your memory usage is to set enable_forward_chunking on the pipeline’s UNet so you don’t run the entire feedforward layer at once. Breaking it up into chunks in a loop is more efficient.

Check out the Text or image-to-video guide for more details about how certain parameters can affect video generation and how to optimize inference by reducing memory usage.

Make sure to check out the Schedulers guide to learn how to explore the tradeoff between scheduler speed and quality, and see the reuse components across pipelines section to learn how to efficiently load the same components into multiple pipelines.

TextToVideoSDPipeline

class diffusers.TextToVideoSDPipeline

< >

( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet3DConditionModel scheduler: KarrasDiffusionSchedulers )

Parameters

Pipeline for text-to-video generation.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods:

__call__

< >

( prompt: typing.Union[str, typing.List[str]] = None height: typing.Optional[int] = None width: typing.Optional[int] = None num_frames: int = 16 num_inference_steps: int = 50 guidance_scale: float = 9.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True callback: typing.Optional[typing.Callable[[int, int, torch.Tensor], NoneType]] = None callback_steps: int = 1 cross_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None clip_skip: typing.Optional[int] = None ) TextToVideoSDPipelineOutput or tuple

Parameters

  • prompt (str or List[str], optional) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.
  • height (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The height in pixels of the generated video.
  • width (int, optional, defaults to self.unet.config.sample_size * self.vae_scale_factor) — The width in pixels of the generated video.
  • num_frames (int, optional, defaults to 16) — The number of video frames that are generated. Defaults to 16 frames which at 8 frames per seconds amounts to 2 seconds of video.
  • num_inference_steps (int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference.
  • guidance_scale (float, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.
  • negative_prompt (str or List[str], optional) — The prompt or prompts to guide what to not include in image generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).
  • num_images_per_prompt (int, optional, defaults to 1) — The number of images to generate per prompt.
  • eta (float, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers.
  • generator (torch.Generator or List[torch.Generator], optional) — A torch.Generator to make generation deterministic.
  • latents (torch.Tensor, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator. Latents should be of shape (batch_size, num_channel, num_frames, height, width).
  • prompt_embeds (torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.
  • negative_prompt_embeds (torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.
  • output_type (str, optional, defaults to "np") — The output format of the generated video. Choose between torch.Tensor or np.array.
  • return_dict (bool, optional, defaults to True) — Whether or not to return a TextToVideoSDPipelineOutput instead of a plain tuple.
  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.Tensor).
  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.
  • cross_attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined in self.processor.
  • clip_skip (int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

Returns

TextToVideoSDPipelineOutput or tuple

If return_dict is True, TextToVideoSDPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated frames.

The call function to the pipeline for generation.

Examples:

>>> import torch
>>> from diffusers import TextToVideoSDPipeline
>>> from diffusers.utils import export_to_video

>>> pipe = TextToVideoSDPipeline.from_pretrained(
...     "damo-vilab/text-to-video-ms-1.7b", torch_dtype=torch.float16, variant="fp16"
... )
>>> pipe.enable_model_cpu_offload()

>>> prompt = "Spiderman is surfing"
>>> video_frames = pipe(prompt).frames[0]
>>> video_path = export_to_video(video_frames)
>>> video_path

encode_prompt

< >

( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )

Parameters

  • prompt (str or List[str], optional) — prompt to be encoded
  • device — (torch.device): torch device
  • num_images_per_prompt (int) — number of images that should be generated per prompt
  • do_classifier_free_guidance (bool) — whether to use classifier free guidance or not
  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).
  • prompt_embeds (torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.
  • negative_prompt_embeds (torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
  • lora_scale (float, optional) — A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
  • clip_skip (int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

Encodes the prompt into text encoder hidden states.

VideoToVideoSDPipeline

class diffusers.VideoToVideoSDPipeline

< >

( vae: AutoencoderKL text_encoder: CLIPTextModel tokenizer: CLIPTokenizer unet: UNet3DConditionModel scheduler: KarrasDiffusionSchedulers )

Parameters

Pipeline for text-guided video-to-video generation.

This model inherits from DiffusionPipeline. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.).

The pipeline also inherits the following loading methods:

__call__

< >

( prompt: typing.Union[str, typing.List[str]] = None video: typing.Union[typing.List[numpy.ndarray], torch.Tensor] = None strength: float = 0.6 num_inference_steps: int = 50 guidance_scale: float = 15.0 negative_prompt: typing.Union[str, typing.List[str], NoneType] = None eta: float = 0.0 generator: typing.Union[torch._C.Generator, typing.List[torch._C.Generator], NoneType] = None latents: typing.Optional[torch.Tensor] = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None output_type: typing.Optional[str] = 'np' return_dict: bool = True callback: typing.Optional[typing.Callable[[int, int, torch.Tensor], NoneType]] = None callback_steps: int = 1 cross_attention_kwargs: typing.Optional[typing.Dict[str, typing.Any]] = None clip_skip: typing.Optional[int] = None ) TextToVideoSDPipelineOutput or tuple

Parameters

  • prompt (str or List[str], optional) — The prompt or prompts to guide image generation. If not defined, you need to pass prompt_embeds.
  • video (List[np.ndarray] or torch.Tensor) — video frames or tensor representing a video batch to be used as the starting point for the process. Can also accept video latents as image, if passing latents directly, it will not be encoded again.
  • strength (float, optional, defaults to 0.8) — Indicates extent to transform the reference video. Must be between 0 and 1. video is used as a starting point, adding more noise to it the larger the strength. The number of denoising steps depends on the amount of noise initially added. When strength is 1, added noise is maximum and the denoising process runs for the full number of iterations specified in num_inference_steps. A value of 1 essentially ignores video.
  • num_inference_steps (int, optional, defaults to 50) — The number of denoising steps. More denoising steps usually lead to a higher quality videos at the expense of slower inference.
  • guidance_scale (float, optional, defaults to 7.5) — A higher guidance scale value encourages the model to generate images closely linked to the text prompt at the expense of lower image quality. Guidance scale is enabled when guidance_scale > 1.
  • negative_prompt (str or List[str], optional) — The prompt or prompts to guide what to not include in video generation. If not defined, you need to pass negative_prompt_embeds instead. Ignored when not using guidance (guidance_scale < 1).
  • eta (float, optional, defaults to 0.0) — Corresponds to parameter eta (η) from the DDIM paper. Only applies to the DDIMScheduler, and is ignored in other schedulers.
  • generator (torch.Generator or List[torch.Generator], optional) — A torch.Generator to make generation deterministic.
  • latents (torch.Tensor, optional) — Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random generator. Latents should be of shape (batch_size, num_channel, num_frames, height, width).
  • prompt_embeds (torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, text embeddings are generated from the prompt input argument.
  • negative_prompt_embeds (torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not provided, negative_prompt_embeds are generated from the negative_prompt input argument.
  • output_type (str, optional, defaults to "np") — The output format of the generated video. Choose between torch.Tensor or np.array.
  • return_dict (bool, optional, defaults to True) — Whether or not to return a TextToVideoSDPipelineOutput instead of a plain tuple.
  • callback (Callable, optional) — A function that calls every callback_steps steps during inference. The function is called with the following arguments: callback(step: int, timestep: int, latents: torch.Tensor).
  • callback_steps (int, optional, defaults to 1) — The frequency at which the callback function is called. If not specified, the callback is called at every step.
  • cross_attention_kwargs (dict, optional) — A kwargs dictionary that if specified is passed along to the AttentionProcessor as defined in self.processor.
  • clip_skip (int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

Returns

TextToVideoSDPipelineOutput or tuple

If return_dict is True, TextToVideoSDPipelineOutput is returned, otherwise a tuple is returned where the first element is a list with the generated frames.

The call function to the pipeline for generation.

Examples:

>>> import torch
>>> from diffusers import DiffusionPipeline, DPMSolverMultistepScheduler
>>> from diffusers.utils import export_to_video

>>> pipe = DiffusionPipeline.from_pretrained("cerspense/zeroscope_v2_576w", torch_dtype=torch.float16)
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.to("cuda")

>>> prompt = "spiderman running in the desert"
>>> video_frames = pipe(prompt, num_inference_steps=40, height=320, width=576, num_frames=24).frames[0]
>>> # safe low-res video
>>> video_path = export_to_video(video_frames, output_video_path="./video_576_spiderman.mp4")

>>> # let's offload the text-to-image model
>>> pipe.to("cpu")

>>> # and load the image-to-image model
>>> pipe = DiffusionPipeline.from_pretrained(
...     "cerspense/zeroscope_v2_XL", torch_dtype=torch.float16, revision="refs/pr/15"
... )
>>> pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
>>> pipe.enable_model_cpu_offload()

>>> # The VAE consumes A LOT of memory, let's make sure we run it in sliced mode
>>> pipe.vae.enable_slicing()

>>> # now let's upscale it
>>> video = [Image.fromarray(frame).resize((1024, 576)) for frame in video_frames]

>>> # and denoise it
>>> video_frames = pipe(prompt, video=video, strength=0.6).frames[0]
>>> video_path = export_to_video(video_frames, output_video_path="./video_1024_spiderman.mp4")
>>> video_path

encode_prompt

< >

( prompt device num_images_per_prompt do_classifier_free_guidance negative_prompt = None prompt_embeds: typing.Optional[torch.Tensor] = None negative_prompt_embeds: typing.Optional[torch.Tensor] = None lora_scale: typing.Optional[float] = None clip_skip: typing.Optional[int] = None )

Parameters

  • prompt (str or List[str], optional) — prompt to be encoded
  • device — (torch.device): torch device
  • num_images_per_prompt (int) — number of images that should be generated per prompt
  • do_classifier_free_guidance (bool) — whether to use classifier free guidance or not
  • negative_prompt (str or List[str], optional) — The prompt or prompts not to guide the image generation. If not defined, one has to pass negative_prompt_embeds instead. Ignored when not using guidance (i.e., ignored if guidance_scale is less than 1).
  • prompt_embeds (torch.Tensor, optional) — Pre-generated text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, text embeddings will be generated from prompt input argument.
  • negative_prompt_embeds (torch.Tensor, optional) — Pre-generated negative text embeddings. Can be used to easily tweak text inputs, e.g. prompt weighting. If not provided, negative_prompt_embeds will be generated from negative_prompt input argument.
  • lora_scale (float, optional) — A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
  • clip_skip (int, optional) — Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that the output of the pre-final layer will be used for computing the prompt embeddings.

Encodes the prompt into text encoder hidden states.

TextToVideoSDPipelineOutput

class diffusers.pipelines.text_to_video_synthesis.TextToVideoSDPipelineOutput

< >

( frames: typing.Union[torch.Tensor, numpy.ndarray, typing.List[typing.List[PIL.Image.Image]]] )

Parameters

  • frames (torch.Tensor, np.ndarray, or List[List[PIL.Image.Image]]) — List of video outputs - It can be a nested list of length batch_size, with each sub-list containing denoised

Output class for text-to-video pipelines.

PIL image sequences of length num_frames. It can also be a NumPy array or Torch tensor of shape (batch_size, num_frames, channels, height, width)

< > Update on GitHub