Diffusers documentation

LatteTransformer3DModel

You are viewing v0.32.1 version. A newer version v0.32.2 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

LatteTransformer3DModel

A Diffusion Transformer model for 3D data from Latte.

LatteTransformer3DModel

class diffusers.LatteTransformer3DModel

< >

( num_attention_heads: int = 16 attention_head_dim: int = 88 in_channels: typing.Optional[int] = None out_channels: typing.Optional[int] = None num_layers: int = 1 dropout: float = 0.0 cross_attention_dim: typing.Optional[int] = None attention_bias: bool = False sample_size: int = 64 patch_size: typing.Optional[int] = None activation_fn: str = 'geglu' num_embeds_ada_norm: typing.Optional[int] = None norm_type: str = 'layer_norm' norm_elementwise_affine: bool = True norm_eps: float = 1e-05 caption_channels: int = None video_length: int = 16 )

forward

< >

( hidden_states: Tensor timestep: typing.Optional[torch.LongTensor] = None encoder_hidden_states: typing.Optional[torch.Tensor] = None encoder_attention_mask: typing.Optional[torch.Tensor] = None enable_temporal_attentions: bool = True return_dict: bool = True )

Parameters

  • hidden_states shape (batch size, channel, num_frame, height, width) — Input hidden_states.
  • timestep ( torch.LongTensor, optional) — Used to indicate denoising step. Optional timestep to be applied as an embedding in AdaLayerNorm.
  • encoder_hidden_states ( torch.FloatTensor of shape (batch size, sequence len, embed dims), optional) — Conditional embeddings for cross attention layer. If not given, cross-attention defaults to self-attention.
  • encoder_attention_mask ( torch.Tensor, optional) — Cross-attention mask applied to encoder_hidden_states. Two formats supported:

    • Mask (batcheight, sequence_length) True = keep, False = discard.
    • Bias (batcheight, 1, sequence_length) 0 = keep, -10000 = discard.

    If ndim == 2: will be interpreted as a mask, then converted into a bias consistent with the format above. This bias will be added to the cross-attention scores.

  • enable_temporal_attentions — (bool, optional, defaults to True): Whether to enable temporal attentions.
  • return_dict (bool, optional, defaults to True) — Whether or not to return a ~models.unet_2d_condition.UNet2DConditionOutput instead of a plain tuple.

The LatteTransformer3DModel forward method.

< > Update on GitHub