pipelines
Pipelines provide a high-level, easy to use, API for running machine learning models.
Example: Instantiate pipeline using the pipeline
function.
import { pipeline } from '@huggingface/transformers';
const classifier = await pipeline('sentiment-analysis');
const output = await classifier('I love transformers!');
// [{'label': 'POSITIVE', 'score': 0.999817686}]
- pipelines
- static
- .Pipeline ⇐
Callable
new Pipeline(options)
.dispose()
:DisposeType
._call(...args)
- .TextClassificationPipeline
new TextClassificationPipeline(options)
._call()
:TextClassificationPipelineCallback
- .TokenClassificationPipeline
new TokenClassificationPipeline(options)
._call()
:TokenClassificationPipelineCallback
- .QuestionAnsweringPipeline
new QuestionAnsweringPipeline(options)
._call()
:QuestionAnsweringPipelineCallback
- .FillMaskPipeline
new FillMaskPipeline(options)
._call()
:FillMaskPipelineCallback
- .Text2TextGenerationPipeline
new Text2TextGenerationPipeline(options)
._key
:’generated_text’
._call()
:Text2TextGenerationPipelineCallback
- .SummarizationPipeline
new SummarizationPipeline(options)
._key
:’summary_text’
- .TranslationPipeline
new TranslationPipeline(options)
._key
:’translation_text’
- .TextGenerationPipeline
new TextGenerationPipeline(options)
._call()
:TextGenerationPipelineCallback
- .ZeroShotClassificationPipeline
new ZeroShotClassificationPipeline(options)
.model
:any
._call()
:ZeroShotClassificationPipelineCallback
- .FeatureExtractionPipeline
new FeatureExtractionPipeline(options)
._call()
:FeatureExtractionPipelineCallback
- .ImageFeatureExtractionPipeline
new ImageFeatureExtractionPipeline(options)
._call()
:ImageFeatureExtractionPipelineCallback
- .AudioClassificationPipeline
new AudioClassificationPipeline(options)
._call()
:AudioClassificationPipelineCallback
- .ZeroShotAudioClassificationPipeline
new ZeroShotAudioClassificationPipeline(options)
._call()
:ZeroShotAudioClassificationPipelineCallback
- .AutomaticSpeechRecognitionPipeline
new AutomaticSpeechRecognitionPipeline(options)
._call()
:AutomaticSpeechRecognitionPipelineCallback
- .ImageToTextPipeline
new ImageToTextPipeline(options)
._call()
:ImageToTextPipelineCallback
- .ImageClassificationPipeline
new ImageClassificationPipeline(options)
._call()
:ImageClassificationPipelineCallback
- .ImageSegmentationPipeline
new ImageSegmentationPipeline(options)
._call()
:ImageSegmentationPipelineCallback
- .ZeroShotImageClassificationPipeline
new ZeroShotImageClassificationPipeline(options)
._call()
:ZeroShotImageClassificationPipelineCallback
- .ObjectDetectionPipeline
new ObjectDetectionPipeline(options)
._call()
:ObjectDetectionPipelineCallback
- .ZeroShotObjectDetectionPipeline
new ZeroShotObjectDetectionPipeline(options)
._call()
:ZeroShotObjectDetectionPipelineCallback
- .DocumentQuestionAnsweringPipeline
new DocumentQuestionAnsweringPipeline(options)
._call()
:DocumentQuestionAnsweringPipelineCallback
- .TextToAudioPipeline
new TextToAudioPipeline(options)
._call()
:TextToAudioPipelineCallback
- .ImageToImagePipeline
new ImageToImagePipeline(options)
._call()
:ImageToImagePipelineCallback
- .DepthEstimationPipeline
new DepthEstimationPipeline(options)
._call()
:DepthEstimationPipelineCallback
.pipeline(task, [model], [options])
⇒*
- .Pipeline ⇐
- inner
~ImagePipelineInputs
:string
|RawImage
|URL
~AudioPipelineInputs
:string
|URL
|Float32Array
|Float64Array
~BoundingBox
:Object
~Disposable
⇒Promise.<void>
~TextPipelineConstructorArgs
:Object
~ImagePipelineConstructorArgs
:Object
~TextImagePipelineConstructorArgs
:Object
~TextClassificationPipelineType
⇒Promise.<(TextClassificationOutput|Array<TextClassificationOutput>)>
~TokenClassificationPipelineType
⇒Promise.<(TokenClassificationOutput|Array<TokenClassificationOutput>)>
~QuestionAnsweringPipelineType
⇒Promise.<(QuestionAnsweringOutput|Array<QuestionAnsweringOutput>)>
~FillMaskPipelineType
⇒Promise.<(FillMaskOutput|Array<FillMaskOutput>)>
~Text2TextGenerationPipelineType
⇒Promise.<(Text2TextGenerationOutput|Array<Text2TextGenerationOutput>)>
~SummarizationPipelineType
⇒Promise.<(SummarizationOutput|Array<SummarizationOutput>)>
~TranslationPipelineType
⇒Promise.<(TranslationOutput|Array<TranslationOutput>)>
~TextGenerationPipelineType
⇒Promise.<(TextGenerationOutput|Array<TextGenerationOutput>)>
~ZeroShotClassificationPipelineType
⇒Promise.<(ZeroShotClassificationOutput|Array<ZeroShotClassificationOutput>)>
~FeatureExtractionPipelineType
⇒Promise.<Tensor>
~ImageFeatureExtractionPipelineType
⇒Promise.<Tensor>
~AudioClassificationPipelineType
⇒Promise.<(AudioClassificationOutput|Array<AudioClassificationOutput>)>
~ZeroShotAudioClassificationPipelineType
⇒Promise.<(Array<ZeroShotAudioClassificationOutput>|Array<Array<ZeroShotAudioClassificationOutput>>)>
~Chunk
:Object
~AutomaticSpeechRecognitionPipelineType
⇒Promise.<(AutomaticSpeechRecognitionOutput|Array<AutomaticSpeechRecognitionOutput>)>
~ImageToTextPipelineType
⇒Promise.<(ImageToTextOutput|Array<ImageToTextOutput>)>
~ImageClassificationPipelineType
⇒Promise.<(ImageClassificationOutput|Array<ImageClassificationOutput>)>
~ImageSegmentationPipelineType
⇒Promise.<Array<ImageSegmentationPipelineOutput>>
~ZeroShotImageClassificationPipelineType
⇒Promise.<(Array<ZeroShotImageClassificationOutput>|Array<Array<ZeroShotImageClassificationOutput>>)>
~ObjectDetectionPipelineType
⇒Promise.<(ObjectDetectionPipelineOutput|Array<ObjectDetectionPipelineOutput>)>
~ZeroShotObjectDetectionPipelineType
⇒Promise.<(Array<ZeroShotObjectDetectionOutput>|Array<Array<ZeroShotObjectDetectionOutput>>)>
~DocumentQuestionAnsweringPipelineType
⇒Promise.<(DocumentQuestionAnsweringOutput|Array<DocumentQuestionAnsweringOutput>)>
~TextToAudioPipelineConstructorArgs
:Object
~TextToAudioPipelineType
⇒Promise.<TextToAudioOutput>
~ImageToImagePipelineType
⇒Promise.<(RawImage|Array<RawImage>)>
~DepthEstimationPipelineType
⇒Promise.<(DepthEstimationPipelineOutput|Array<DepthEstimationPipelineOutput>)>
~AllTasks
:*
- static
pipelines.Pipeline ⇐ <code> Callable </code>
The Pipeline class is the class from which all pipelines inherit. Refer to this class for methods shared across different pipelines.
Kind: static class of pipelines
Extends: Callable
- .Pipeline ⇐
Callable
new Pipeline(options)
.dispose()
:DisposeType
._call(...args)
new Pipeline(options)
Create a new Pipeline.
Param | Type | Default | Description |
---|---|---|---|
options | Object | An object containing the following properties: | |
[options.task] | string | The task of the pipeline. Useful for specifying subtasks. | |
[options.model] | PreTrainedModel | The model used by the pipeline. | |
[options.tokenizer] | PreTrainedTokenizer |
| The tokenizer used by the pipeline (if any). |
[options.processor] | Processor |
| The processor used by the pipeline (if any). |
pipeline.dispose() : <code> DisposeType </code>
Kind: instance method of Pipeline
pipeline._call(...args)
This method should be implemented in subclasses to provide the functionality of the callable object.
Kind: instance method of Pipeline
Overrides: _call
Throws:
Error
If the subclass does not implement the `_call` method.
Param | Type |
---|---|
...args | Array.<any> |
pipelines.TextClassificationPipeline
Text classification pipeline using any ModelForSequenceClassification
.
Example: Sentiment-analysis w/ Xenova/distilbert-base-uncased-finetuned-sst-2-english
.
const classifier = await pipeline('sentiment-analysis', 'Xenova/distilbert-base-uncased-finetuned-sst-2-english');
const output = await classifier('I love transformers!');
// [{ label: 'POSITIVE', score: 0.999788761138916 }]
Example: Multilingual sentiment-analysis w/ Xenova/bert-base-multilingual-uncased-sentiment
(and return top 5 classes).
const classifier = await pipeline('sentiment-analysis', 'Xenova/bert-base-multilingual-uncased-sentiment');
const output = await classifier('Le meilleur film de tous les temps.', { top_k: 5 });
// [
// { label: '5 stars', score: 0.9610759615898132 },
// { label: '4 stars', score: 0.03323351591825485 },
// { label: '3 stars', score: 0.0036155181005597115 },
// { label: '1 star', score: 0.0011325967498123646 },
// { label: '2 stars', score: 0.0009423971059732139 }
// ]
Example: Toxic comment classification w/ Xenova/toxic-bert
(and return all classes).
const classifier = await pipeline('text-classification', 'Xenova/toxic-bert');
const output = await classifier('I hate you!', { top_k: null });
// [
// { label: 'toxic', score: 0.9593140482902527 },
// { label: 'insult', score: 0.16187334060668945 },
// { label: 'obscene', score: 0.03452680632472038 },
// { label: 'identity_hate', score: 0.0223250575363636 },
// { label: 'threat', score: 0.019197041168808937 },
// { label: 'severe_toxic', score: 0.005651099607348442 }
// ]
Kind: static class of pipelines
- .TextClassificationPipeline
new TextClassificationPipeline(options)
._call()
:TextClassificationPipelineCallback
new TextClassificationPipeline(options)
Create a new TextClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
textClassificationPipeline._call() : <code> TextClassificationPipelineCallback </code>
Kind: instance method of TextClassificationPipeline
pipelines.TokenClassificationPipeline
Named Entity Recognition pipeline using any ModelForTokenClassification
.
Example: Perform named entity recognition with Xenova/bert-base-NER
.
const classifier = await pipeline('token-classification', 'Xenova/bert-base-NER');
const output = await classifier('My name is Sarah and I live in London');
// [
// { entity: 'B-PER', score: 0.9980202913284302, index: 4, word: 'Sarah' },
// { entity: 'B-LOC', score: 0.9994474053382874, index: 9, word: 'London' }
// ]
Example: Perform named entity recognition with Xenova/bert-base-NER
(and return all labels).
const classifier = await pipeline('token-classification', 'Xenova/bert-base-NER');
const output = await classifier('Sarah lives in the United States of America', { ignore_labels: [] });
// [
// { entity: 'B-PER', score: 0.9966587424278259, index: 1, word: 'Sarah' },
// { entity: 'O', score: 0.9987385869026184, index: 2, word: 'lives' },
// { entity: 'O', score: 0.9990072846412659, index: 3, word: 'in' },
// { entity: 'O', score: 0.9988298416137695, index: 4, word: 'the' },
// { entity: 'B-LOC', score: 0.9995510578155518, index: 5, word: 'United' },
// { entity: 'I-LOC', score: 0.9990395307540894, index: 6, word: 'States' },
// { entity: 'I-LOC', score: 0.9986724853515625, index: 7, word: 'of' },
// { entity: 'I-LOC', score: 0.9975294470787048, index: 8, word: 'America' }
// ]
Kind: static class of pipelines
- .TokenClassificationPipeline
new TokenClassificationPipeline(options)
._call()
:TokenClassificationPipelineCallback
new TokenClassificationPipeline(options)
Create a new TokenClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
tokenClassificationPipeline._call() : <code> TokenClassificationPipelineCallback </code>
Kind: instance method of TokenClassificationPipeline
pipelines.QuestionAnsweringPipeline
Question Answering pipeline using any ModelForQuestionAnswering
.
Example: Run question answering with Xenova/distilbert-base-uncased-distilled-squad
.
const answerer = await pipeline('question-answering', 'Xenova/distilbert-base-uncased-distilled-squad');
const question = 'Who was Jim Henson?';
const context = 'Jim Henson was a nice puppet.';
const output = await answerer(question, context);
// {
// answer: "a nice puppet",
// score: 0.5768911502526741
// }
Kind: static class of pipelines
- .QuestionAnsweringPipeline
new QuestionAnsweringPipeline(options)
._call()
:QuestionAnsweringPipelineCallback
new QuestionAnsweringPipeline(options)
Create a new QuestionAnsweringPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
questionAnsweringPipeline._call() : <code> QuestionAnsweringPipelineCallback </code>
Kind: instance method of QuestionAnsweringPipeline
pipelines.FillMaskPipeline
Masked language modeling prediction pipeline using any ModelWithLMHead
.
Example: Perform masked language modelling (a.k.a. “fill-mask”) with Xenova/bert-base-uncased
.
const unmasker = await pipeline('fill-mask', 'Xenova/bert-base-cased');
const output = await unmasker('The goal of life is [MASK].');
// [
// { token_str: 'survival', score: 0.06137419492006302, token: 8115, sequence: 'The goal of life is survival.' },
// { token_str: 'love', score: 0.03902450203895569, token: 1567, sequence: 'The goal of life is love.' },
// { token_str: 'happiness', score: 0.03253183513879776, token: 9266, sequence: 'The goal of life is happiness.' },
// { token_str: 'freedom', score: 0.018736306577920914, token: 4438, sequence: 'The goal of life is freedom.' },
// { token_str: 'life', score: 0.01859794743359089, token: 1297, sequence: 'The goal of life is life.' }
// ]
Example: Perform masked language modelling (a.k.a. “fill-mask”) with Xenova/bert-base-cased
(and return top result).
const unmasker = await pipeline('fill-mask', 'Xenova/bert-base-cased');
const output = await unmasker('The Milky Way is a [MASK] galaxy.', { top_k: 1 });
// [{ token_str: 'spiral', score: 0.6299987435340881, token: 14061, sequence: 'The Milky Way is a spiral galaxy.' }]
Kind: static class of pipelines
- .FillMaskPipeline
new FillMaskPipeline(options)
._call()
:FillMaskPipelineCallback
new FillMaskPipeline(options)
Create a new FillMaskPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
fillMaskPipeline._call() : <code> FillMaskPipelineCallback </code>
Kind: instance method of FillMaskPipeline
pipelines.Text2TextGenerationPipeline
Text2TextGenerationPipeline class for generating text using a model that performs text-to-text generation tasks.
Example: Text-to-text generation w/ Xenova/LaMini-Flan-T5-783M
.
const generator = await pipeline('text2text-generation', 'Xenova/LaMini-Flan-T5-783M');
const output = await generator('how can I become more healthy?', {
max_new_tokens: 100,
});
// [{ generated_text: "To become more healthy, you can: 1. Eat a balanced diet with plenty of fruits, vegetables, whole grains, lean proteins, and healthy fats. 2. Stay hydrated by drinking plenty of water. 3. Get enough sleep and manage stress levels. 4. Avoid smoking and excessive alcohol consumption. 5. Regularly exercise and maintain a healthy weight. 6. Practice good hygiene and sanitation. 7. Seek medical attention if you experience any health issues." }]
Kind: static class of pipelines
- .Text2TextGenerationPipeline
new Text2TextGenerationPipeline(options)
._key
:’generated_text’
._call()
:Text2TextGenerationPipelineCallback
new Text2TextGenerationPipeline(options)
Create a new Text2TextGenerationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
text2TextGenerationPipeline._key : <code> ’ generated_text ’ </code>
Kind: instance property of Text2TextGenerationPipeline
text2TextGenerationPipeline._call() : <code> Text2TextGenerationPipelineCallback </code>
Kind: instance method of Text2TextGenerationPipeline
pipelines.SummarizationPipeline
A pipeline for summarization tasks, inheriting from Text2TextGenerationPipeline.
Example: Summarization w/ Xenova/distilbart-cnn-6-6
.
const generator = await pipeline('summarization', 'Xenova/distilbart-cnn-6-6');
const text = 'The tower is 324 metres (1,063 ft) tall, about the same height as an 81-storey building, ' +
'and the tallest structure in Paris. Its base is square, measuring 125 metres (410 ft) on each side. ' +
'During its construction, the Eiffel Tower surpassed the Washington Monument to become the tallest ' +
'man-made structure in the world, a title it held for 41 years until the Chrysler Building in New ' +
'York City was finished in 1930. It was the first structure to reach a height of 300 metres. Due to ' +
'the addition of a broadcasting aerial at the top of the tower in 1957, it is now taller than the ' +
'Chrysler Building by 5.2 metres (17 ft). Excluding transmitters, the Eiffel Tower is the second ' +
'tallest free-standing structure in France after the Millau Viaduct.';
const output = await generator(text, {
max_new_tokens: 100,
});
// [{ summary_text: ' The Eiffel Tower is about the same height as an 81-storey building and the tallest structure in Paris. It is the second tallest free-standing structure in France after the Millau Viaduct.' }]
Kind: static class of pipelines
- .SummarizationPipeline
new SummarizationPipeline(options)
._key
:’summary_text’
new SummarizationPipeline(options)
Create a new SummarizationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
summarizationPipeline._key : <code> ’ summary_text ’ </code>
Kind: instance property of SummarizationPipeline
pipelines.TranslationPipeline
Translates text from one language to another.
Example: Multilingual translation w/ Xenova/nllb-200-distilled-600M
.
See here for the full list of languages and their corresponding codes.
const translator = await pipeline('translation', 'Xenova/nllb-200-distilled-600M');
const output = await translator('जीवन एक चॉकलेट बॉक्स की तरह है।', {
src_lang: 'hin_Deva', // Hindi
tgt_lang: 'fra_Latn', // French
});
// [{ translation_text: 'La vie est comme une boîte à chocolat.' }]
Example: Multilingual translation w/ Xenova/m2m100_418M
.
See here for the full list of languages and their corresponding codes.
const translator = await pipeline('translation', 'Xenova/m2m100_418M');
const output = await translator('生活就像一盒巧克力。', {
src_lang: 'zh', // Chinese
tgt_lang: 'en', // English
});
// [{ translation_text: 'Life is like a box of chocolate.' }]
Example: Multilingual translation w/ Xenova/mbart-large-50-many-to-many-mmt
.
See here for the full list of languages and their corresponding codes.
const translator = await pipeline('translation', 'Xenova/mbart-large-50-many-to-many-mmt');
const output = await translator('संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है', {
src_lang: 'hi_IN', // Hindi
tgt_lang: 'fr_XX', // French
});
// [{ translation_text: 'Le chef des Nations affirme qu 'il n 'y a military solution in Syria.' }]
Kind: static class of pipelines
- .TranslationPipeline
new TranslationPipeline(options)
._key
:’translation_text’
new TranslationPipeline(options)
Create a new TranslationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
translationPipeline._key : <code> ’ translation_text ’ </code>
Kind: instance property of TranslationPipeline
pipelines.TextGenerationPipeline
Language generation pipeline using any ModelWithLMHead
or ModelForCausalLM
.
This pipeline predicts the words that will follow a specified text prompt.
NOTE: For the full list of generation parameters, see GenerationConfig
.
Example: Text generation with Xenova/distilgpt2
(default settings).
const generator = await pipeline('text-generation', 'Xenova/distilgpt2');
const text = 'I enjoy walking with my cute dog,';
const output = await generator(text);
// [{ generated_text: "I enjoy walking with my cute dog, and I love to play with the other dogs." }]
Example: Text generation with Xenova/distilgpt2
(custom settings).
const generator = await pipeline('text-generation', 'Xenova/distilgpt2');
const text = 'Once upon a time, there was';
const output = await generator(text, {
temperature: 2,
max_new_tokens: 10,
repetition_penalty: 1.5,
no_repeat_ngram_size: 2,
num_beams: 2,
num_return_sequences: 2,
});
// [{
// "generated_text": "Once upon a time, there was an abundance of information about the history and activities that"
// }, {
// "generated_text": "Once upon a time, there was an abundance of information about the most important and influential"
// }]
Example: Run code generation with Xenova/codegen-350M-mono
.
const generator = await pipeline('text-generation', 'Xenova/codegen-350M-mono');
const text = 'def fib(n):';
const output = await generator(text, {
max_new_tokens: 44,
});
// [{
// generated_text: 'def fib(n):\n' +
// ' if n == 0:\n' +
// ' return 0\n' +
// ' elif n == 1:\n' +
// ' return 1\n' +
// ' else:\n' +
// ' return fib(n-1) + fib(n-2)\n'
// }]
Kind: static class of pipelines
- .TextGenerationPipeline
new TextGenerationPipeline(options)
._call()
:TextGenerationPipelineCallback
new TextGenerationPipeline(options)
Create a new TextGenerationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
textGenerationPipeline._call() : <code> TextGenerationPipelineCallback </code>
Kind: instance method of TextGenerationPipeline
pipelines.ZeroShotClassificationPipeline
NLI-based zero-shot classification pipeline using a ModelForSequenceClassification
trained on NLI (natural language inference) tasks. Equivalent of text-classification
pipelines, but these models don’t require a hardcoded number of potential classes, they
can be chosen at runtime. It usually means it’s slower but it is much more flexible.
Example: Zero shot classification with Xenova/mobilebert-uncased-mnli
.
const classifier = await pipeline('zero-shot-classification', 'Xenova/mobilebert-uncased-mnli');
const text = 'Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.';
const labels = [ 'mobile', 'billing', 'website', 'account access' ];
const output = await classifier(text, labels);
// {
// sequence: 'Last week I upgraded my iOS version and ever since then my phone has been overheating whenever I use your app.',
// labels: [ 'mobile', 'website', 'billing', 'account access' ],
// scores: [ 0.5562091040482018, 0.1843621307860853, 0.13942646639336376, 0.12000229877234923 ]
// }
Example: Zero shot classification with Xenova/nli-deberta-v3-xsmall
(multi-label).
const classifier = await pipeline('zero-shot-classification', 'Xenova/nli-deberta-v3-xsmall');
const text = 'I have a problem with my iphone that needs to be resolved asap!';
const labels = [ 'urgent', 'not urgent', 'phone', 'tablet', 'computer' ];
const output = await classifier(text, labels, { multi_label: true });
// {
// sequence: 'I have a problem with my iphone that needs to be resolved asap!',
// labels: [ 'urgent', 'phone', 'computer', 'tablet', 'not urgent' ],
// scores: [ 0.9958870956360275, 0.9923963400697035, 0.002333537946160235, 0.0015134138567598765, 0.0010699384208377163 ]
// }
Kind: static class of pipelines
- .ZeroShotClassificationPipeline
new ZeroShotClassificationPipeline(options)
.model
:any
._call()
:ZeroShotClassificationPipelineCallback
new ZeroShotClassificationPipeline(options)
Create a new ZeroShotClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotClassificationPipeline.model : <code> any </code>
Kind: instance property of ZeroShotClassificationPipeline
zeroShotClassificationPipeline._call() : <code> ZeroShotClassificationPipelineCallback </code>
Kind: instance method of ZeroShotClassificationPipeline
pipelines.FeatureExtractionPipeline
Feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks.
Example: Run feature extraction with bert-base-uncased
(without pooling/normalization).
const extractor = await pipeline('feature-extraction', 'Xenova/bert-base-uncased', { revision: 'default' });
const output = await extractor('This is a simple test.');
// Tensor {
// type: 'float32',
// data: Float32Array [0.05939924716949463, 0.021655935794115067, ...],
// dims: [1, 8, 768]
// }
Example: Run feature extraction with bert-base-uncased
(with pooling/normalization).
const extractor = await pipeline('feature-extraction', 'Xenova/bert-base-uncased', { revision: 'default' });
const output = await extractor('This is a simple test.', { pooling: 'mean', normalize: true });
// Tensor {
// type: 'float32',
// data: Float32Array [0.03373778983950615, -0.010106077417731285, ...],
// dims: [1, 768]
// }
Example: Calculating embeddings with sentence-transformers
models.
const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
const output = await extractor('This is a simple test.', { pooling: 'mean', normalize: true });
// Tensor {
// type: 'float32',
// data: Float32Array [0.09094982594251633, -0.014774246141314507, ...],
// dims: [1, 384]
// }
Example: Calculating binary embeddings with sentence-transformers
models.
const extractor = await pipeline('feature-extraction', 'Xenova/all-MiniLM-L6-v2');
const output = await extractor('This is a simple test.', { pooling: 'mean', quantize: true, precision: 'binary' });
// Tensor {
// type: 'int8',
// data: Int8Array [49, 108, 24, ...],
// dims: [1, 48]
// }
Kind: static class of pipelines
- .FeatureExtractionPipeline
new FeatureExtractionPipeline(options)
._call()
:FeatureExtractionPipelineCallback
new FeatureExtractionPipeline(options)
Create a new FeatureExtractionPipeline.
Param | Type | Description |
---|---|---|
options | TextPipelineConstructorArgs | An object used to instantiate the pipeline. |
featureExtractionPipeline._call() : <code> FeatureExtractionPipelineCallback </code>
Kind: instance method of FeatureExtractionPipeline
pipelines.ImageFeatureExtractionPipeline
Image feature extraction pipeline using no model head. This pipeline extracts the hidden states from the base transformer, which can be used as features in downstream tasks.
Example: Perform image feature extraction with Xenova/vit-base-patch16-224-in21k
.
const image_feature_extractor = await pipeline('image-feature-extraction', 'Xenova/vit-base-patch16-224-in21k');
const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/v3.0.0/cats.png';
const features = await image_feature_extractor(url);
// Tensor {
// dims: [ 1, 197, 768 ],
// type: 'float32',
// data: Float32Array(151296) [ ... ],
// size: 151296
// }
Example: Compute image embeddings with Xenova/clip-vit-base-patch32
.
const image_feature_extractor = await pipeline('image-feature-extraction', 'Xenova/clip-vit-base-patch32');
const url = 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/v3.0.0/cats.png';
const features = await image_feature_extractor(url);
// Tensor {
// dims: [ 1, 512 ],
// type: 'float32',
// data: Float32Array(512) [ ... ],
// size: 512
// }
Kind: static class of pipelines
- .ImageFeatureExtractionPipeline
new ImageFeatureExtractionPipeline(options)
._call()
:ImageFeatureExtractionPipelineCallback
new ImageFeatureExtractionPipeline(options)
Create a new ImageFeatureExtractionPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageFeatureExtractionPipeline._call() : <code> ImageFeatureExtractionPipelineCallback </code>
Kind: instance method of ImageFeatureExtractionPipeline
pipelines.AudioClassificationPipeline
Audio classification pipeline using any AutoModelForAudioClassification
.
This pipeline predicts the class of a raw waveform or an audio file.
Example: Perform audio classification with Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech
.
const classifier = await pipeline('audio-classification', 'Xenova/wav2vec2-large-xlsr-53-gender-recognition-librispeech');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/jfk.wav';
const output = await classifier(url);
// [
// { label: 'male', score: 0.9981542229652405 },
// { label: 'female', score: 0.001845747814513743 }
// ]
Example: Perform audio classification with Xenova/ast-finetuned-audioset-10-10-0.4593
and return top 4 results.
const classifier = await pipeline('audio-classification', 'Xenova/ast-finetuned-audioset-10-10-0.4593');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/cat_meow.wav';
const output = await classifier(url, { top_k: 4 });
// [
// { label: 'Meow', score: 0.5617874264717102 },
// { label: 'Cat', score: 0.22365376353263855 },
// { label: 'Domestic animals, pets', score: 0.1141069084405899 },
// { label: 'Animal', score: 0.08985692262649536 },
// ]
Kind: static class of pipelines
- .AudioClassificationPipeline
new AudioClassificationPipeline(options)
._call()
:AudioClassificationPipelineCallback
new AudioClassificationPipeline(options)
Create a new AudioClassificationPipeline.
Param | Type | Description |
---|---|---|
options | AudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
audioClassificationPipeline._call() : <code> AudioClassificationPipelineCallback </code>
Kind: instance method of AudioClassificationPipeline
pipelines.ZeroShotAudioClassificationPipeline
Zero shot audio classification pipeline using ClapModel
. This pipeline predicts the class of an audio when you
provide an audio and a set of candidate_labels
.
Example: Perform zero-shot audio classification with Xenova/clap-htsat-unfused
.
const classifier = await pipeline('zero-shot-audio-classification', 'Xenova/clap-htsat-unfused');
const audio = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/dog_barking.wav';
const candidate_labels = ['dog', 'vaccum cleaner'];
const scores = await classifier(audio, candidate_labels);
// [
// { score: 0.9993992447853088, label: 'dog' },
// { score: 0.0006007603369653225, label: 'vaccum cleaner' }
// ]
Kind: static class of pipelines
- .ZeroShotAudioClassificationPipeline
new ZeroShotAudioClassificationPipeline(options)
._call()
:ZeroShotAudioClassificationPipelineCallback
new ZeroShotAudioClassificationPipeline(options)
Create a new ZeroShotAudioClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotAudioClassificationPipeline._call() : <code> ZeroShotAudioClassificationPipelineCallback </code>
Kind: instance method of ZeroShotAudioClassificationPipeline
pipelines.AutomaticSpeechRecognitionPipeline
Pipeline that aims at extracting spoken text contained within some audio.
Example: Transcribe English.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/jfk.wav';
const output = await transcriber(url);
// { text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country." }
Example: Transcribe English w/ timestamps.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/jfk.wav';
const output = await transcriber(url, { return_timestamps: true });
// {
// text: " And so my fellow Americans ask not what your country can do for you, ask what you can do for your country."
// chunks: [
// { timestamp: [0, 8], text: " And so my fellow Americans ask not what your country can do for you" }
// { timestamp: [8, 11], text: " ask what you can do for your country." }
// ]
// }
Example: Transcribe English w/ word-level timestamps.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/jfk.wav';
const output = await transcriber(url, { return_timestamps: 'word' });
// {
// "text": " And so my fellow Americans ask not what your country can do for you ask what you can do for your country.",
// "chunks": [
// { "text": " And", "timestamp": [0, 0.78] },
// { "text": " so", "timestamp": [0.78, 1.06] },
// { "text": " my", "timestamp": [1.06, 1.46] },
// ...
// { "text": " for", "timestamp": [9.72, 9.92] },
// { "text": " your", "timestamp": [9.92, 10.22] },
// { "text": " country.", "timestamp": [10.22, 13.5] }
// ]
// }
Example: Transcribe French.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-small');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/french-audio.mp3';
const output = await transcriber(url, { language: 'french', task: 'transcribe' });
// { text: " J'adore, j'aime, je n'aime pas, je déteste." }
Example: Translate French to English.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-small');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/french-audio.mp3';
const output = await transcriber(url, { language: 'french', task: 'translate' });
// { text: " I love, I like, I don't like, I hate." }
Example: Transcribe/translate audio longer than 30 seconds.
const transcriber = await pipeline('automatic-speech-recognition', 'Xenova/whisper-tiny.en');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/ted_60.wav';
const output = await transcriber(url, { chunk_length_s: 30, stride_length_s: 5 });
// { text: " So in college, I was a government major, which means [...] So I'd start off light and I'd bump it up" }
Kind: static class of pipelines
- .AutomaticSpeechRecognitionPipeline
new AutomaticSpeechRecognitionPipeline(options)
._call()
:AutomaticSpeechRecognitionPipelineCallback
new AutomaticSpeechRecognitionPipeline(options)
Create a new AutomaticSpeechRecognitionPipeline.
Param | Type | Description |
---|---|---|
options | TextAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
automaticSpeechRecognitionPipeline._call() : <code> AutomaticSpeechRecognitionPipelineCallback </code>
Kind: instance method of AutomaticSpeechRecognitionPipeline
pipelines.ImageToTextPipeline
Image To Text pipeline using a AutoModelForVision2Seq
. This pipeline predicts a caption for a given image.
Example: Generate a caption for an image w/ Xenova/vit-gpt2-image-captioning
.
const captioner = await pipeline('image-to-text', 'Xenova/vit-gpt2-image-captioning');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/cats.jpg';
const output = await captioner(url);
// [{ generated_text: 'a cat laying on a couch with another cat' }]
Example: Optical Character Recognition (OCR) w/ Xenova/trocr-small-handwritten
.
const captioner = await pipeline('image-to-text', 'Xenova/trocr-small-handwritten');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/handwriting.jpg';
const output = await captioner(url);
// [{ generated_text: 'Mr. Brown commented icily.' }]
Kind: static class of pipelines
- .ImageToTextPipeline
new ImageToTextPipeline(options)
._call()
:ImageToTextPipelineCallback
new ImageToTextPipeline(options)
Create a new ImageToTextPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageToTextPipeline._call() : <code> ImageToTextPipelineCallback </code>
Kind: instance method of ImageToTextPipeline
pipelines.ImageClassificationPipeline
Image classification pipeline using any AutoModelForImageClassification
.
This pipeline predicts the class of an image.
Example: Classify an image.
const classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/tiger.jpg';
const output = await classifier(url);
// [
// { label: 'tiger, Panthera tigris', score: 0.632695734500885 },
// ]
Example: Classify an image and return top n
classes.
const classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/tiger.jpg';
const output = await classifier(url, { top_k: 3 });
// [
// { label: 'tiger, Panthera tigris', score: 0.632695734500885 },
// { label: 'tiger cat', score: 0.3634825646877289 },
// { label: 'lion, king of beasts, Panthera leo', score: 0.00045060308184474707 },
// ]
Example: Classify an image and return all classes.
const classifier = await pipeline('image-classification', 'Xenova/vit-base-patch16-224');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/tiger.jpg';
const output = await classifier(url, { top_k: 0 });
// [
// { label: 'tiger, Panthera tigris', score: 0.632695734500885 },
// { label: 'tiger cat', score: 0.3634825646877289 },
// { label: 'lion, king of beasts, Panthera leo', score: 0.00045060308184474707 },
// { label: 'jaguar, panther, Panthera onca, Felis onca', score: 0.00035465499968267977 },
// ...
// ]
Kind: static class of pipelines
- .ImageClassificationPipeline
new ImageClassificationPipeline(options)
._call()
:ImageClassificationPipelineCallback
new ImageClassificationPipeline(options)
Create a new ImageClassificationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageClassificationPipeline._call() : <code> ImageClassificationPipelineCallback </code>
Kind: instance method of ImageClassificationPipeline
pipelines.ImageSegmentationPipeline
Image segmentation pipeline using any AutoModelForXXXSegmentation
.
This pipeline predicts masks of objects and their classes.
Example: Perform image segmentation with Xenova/detr-resnet-50-panoptic
.
const segmenter = await pipeline('image-segmentation', 'Xenova/detr-resnet-50-panoptic');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/cats.jpg';
const output = await segmenter(url);
// [
// { label: 'remote', score: 0.9984649419784546, mask: RawImage { ... } },
// { label: 'cat', score: 0.9994316101074219, mask: RawImage { ... } }
// ]
Kind: static class of pipelines
- .ImageSegmentationPipeline
new ImageSegmentationPipeline(options)
._call()
:ImageSegmentationPipelineCallback
new ImageSegmentationPipeline(options)
Create a new ImageSegmentationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageSegmentationPipeline._call() : <code> ImageSegmentationPipelineCallback </code>
Kind: instance method of ImageSegmentationPipeline
pipelines.ZeroShotImageClassificationPipeline
Zero shot image classification pipeline. This pipeline predicts the class of
an image when you provide an image and a set of candidate_labels
.
Example: Zero shot image classification w/ Xenova/clip-vit-base-patch32
.
const classifier = await pipeline('zero-shot-image-classification', 'Xenova/clip-vit-base-patch32');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/tiger.jpg';
const output = await classifier(url, ['tiger', 'horse', 'dog']);
// [
// { score: 0.9993917942047119, label: 'tiger' },
// { score: 0.0003519294841680676, label: 'horse' },
// { score: 0.0002562698791734874, label: 'dog' }
// ]
Kind: static class of pipelines
- .ZeroShotImageClassificationPipeline
new ZeroShotImageClassificationPipeline(options)
._call()
:ZeroShotImageClassificationPipelineCallback
new ZeroShotImageClassificationPipeline(options)
Create a new ZeroShotImageClassificationPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotImageClassificationPipeline._call() : <code> ZeroShotImageClassificationPipelineCallback </code>
Kind: instance method of ZeroShotImageClassificationPipeline
pipelines.ObjectDetectionPipeline
Object detection pipeline using any AutoModelForObjectDetection
.
This pipeline predicts bounding boxes of objects and their classes.
Example: Run object-detection with Xenova/detr-resnet-50
.
const detector = await pipeline('object-detection', 'Xenova/detr-resnet-50');
const img = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/cats.jpg';
const output = await detector(img, { threshold: 0.9 });
// [{
// score: 0.9976370930671692,
// label: "remote",
// box: { xmin: 31, ymin: 68, xmax: 190, ymax: 118 }
// },
// ...
// {
// score: 0.9984092116355896,
// label: "cat",
// box: { xmin: 331, ymin: 19, xmax: 649, ymax: 371 }
// }]
Kind: static class of pipelines
- .ObjectDetectionPipeline
new ObjectDetectionPipeline(options)
._call()
:ObjectDetectionPipelineCallback
new ObjectDetectionPipeline(options)
Create a new ObjectDetectionPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
objectDetectionPipeline._call() : <code> ObjectDetectionPipelineCallback </code>
Kind: instance method of ObjectDetectionPipeline
pipelines.ZeroShotObjectDetectionPipeline
Zero-shot object detection pipeline. This pipeline predicts bounding boxes of
objects when you provide an image and a set of candidate_labels
.
Example: Zero-shot object detection w/ Xenova/owlvit-base-patch32
.
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/astronaut.png';
const candidate_labels = ['human face', 'rocket', 'helmet', 'american flag'];
const output = await detector(url, candidate_labels);
// [
// {
// score: 0.24392342567443848,
// label: 'human face',
// box: { xmin: 180, ymin: 67, xmax: 274, ymax: 175 }
// },
// {
// score: 0.15129457414150238,
// label: 'american flag',
// box: { xmin: 0, ymin: 4, xmax: 106, ymax: 513 }
// },
// {
// score: 0.13649864494800568,
// label: 'helmet',
// box: { xmin: 277, ymin: 337, xmax: 511, ymax: 511 }
// },
// {
// score: 0.10262022167444229,
// label: 'rocket',
// box: { xmin: 352, ymin: -1, xmax: 463, ymax: 287 }
// }
// ]
Example: Zero-shot object detection w/ Xenova/owlvit-base-patch32
(returning top 4 matches and setting a threshold).
const detector = await pipeline('zero-shot-object-detection', 'Xenova/owlvit-base-patch32');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/beach.png';
const candidate_labels = ['hat', 'book', 'sunglasses', 'camera'];
const output = await detector(url, candidate_labels, { top_k: 4, threshold: 0.05 });
// [
// {
// score: 0.1606510728597641,
// label: 'sunglasses',
// box: { xmin: 347, ymin: 229, xmax: 429, ymax: 264 }
// },
// {
// score: 0.08935828506946564,
// label: 'hat',
// box: { xmin: 38, ymin: 174, xmax: 258, ymax: 364 }
// },
// {
// score: 0.08530698716640472,
// label: 'camera',
// box: { xmin: 187, ymin: 350, xmax: 260, ymax: 411 }
// },
// {
// score: 0.08349756896495819,
// label: 'book',
// box: { xmin: 261, ymin: 280, xmax: 494, ymax: 425 }
// }
// ]
Kind: static class of pipelines
- .ZeroShotObjectDetectionPipeline
new ZeroShotObjectDetectionPipeline(options)
._call()
:ZeroShotObjectDetectionPipelineCallback
new ZeroShotObjectDetectionPipeline(options)
Create a new ZeroShotObjectDetectionPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
zeroShotObjectDetectionPipeline._call() : <code> ZeroShotObjectDetectionPipelineCallback </code>
Kind: instance method of ZeroShotObjectDetectionPipeline
pipelines.DocumentQuestionAnsweringPipeline
Document Question Answering pipeline using any AutoModelForDocumentQuestionAnswering
.
The inputs/outputs are similar to the (extractive) question answering pipeline; however,
the pipeline takes an image (and optional OCR’d words/boxes) as input instead of text context.
Example: Answer questions about a document with Xenova/donut-base-finetuned-docvqa
.
const qa_pipeline = await pipeline('document-question-answering', 'Xenova/donut-base-finetuned-docvqa');
const image = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/invoice.png';
const question = 'What is the invoice number?';
const output = await qa_pipeline(image, question);
// [{ answer: 'us-001' }]
Kind: static class of pipelines
- .DocumentQuestionAnsweringPipeline
new DocumentQuestionAnsweringPipeline(options)
._call()
:DocumentQuestionAnsweringPipelineCallback
new DocumentQuestionAnsweringPipeline(options)
Create a new DocumentQuestionAnsweringPipeline.
Param | Type | Description |
---|---|---|
options | TextImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
documentQuestionAnsweringPipeline._call() : <code> DocumentQuestionAnsweringPipelineCallback </code>
Kind: instance method of DocumentQuestionAnsweringPipeline
pipelines.TextToAudioPipeline
Text-to-audio generation pipeline using any AutoModelForTextToWaveform
or AutoModelForTextToSpectrogram
.
This pipeline generates an audio file from an input text and optional other conditional inputs.
Example: Generate audio from text with Xenova/speecht5_tts
.
const synthesizer = await pipeline('text-to-speech', 'Xenova/speecht5_tts', { quantized: false });
const speaker_embeddings = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/speaker_embeddings.bin';
const out = await synthesizer('Hello, my dog is cute', { speaker_embeddings });
// {
// audio: Float32Array(26112) [-0.00005657337896991521, 0.00020583874720614403, ...],
// sampling_rate: 16000
// }
You can then save the audio to a .wav file with the wavefile
package:
import wavefile from 'wavefile';
import fs from 'fs';
const wav = new wavefile.WaveFile();
wav.fromScratch(1, out.sampling_rate, '32f', out.audio);
fs.writeFileSync('out.wav', wav.toBuffer());
Example: Multilingual speech generation with Xenova/mms-tts-fra
. See here for the full list of available languages (1107).
const synthesizer = await pipeline('text-to-speech', 'Xenova/mms-tts-fra');
const out = await synthesizer('Bonjour');
// {
// audio: Float32Array(23808) [-0.00037693005288019776, 0.0003325853613205254, ...],
// sampling_rate: 16000
// }
Kind: static class of pipelines
- .TextToAudioPipeline
new TextToAudioPipeline(options)
._call()
:TextToAudioPipelineCallback
new TextToAudioPipeline(options)
Create a new TextToAudioPipeline.
Param | Type | Description |
---|---|---|
options | TextToAudioPipelineConstructorArgs | An object used to instantiate the pipeline. |
textToAudioPipeline._call() : <code> TextToAudioPipelineCallback </code>
Kind: instance method of TextToAudioPipeline
pipelines.ImageToImagePipeline
Image to Image pipeline using any AutoModelForImageToImage
. This pipeline generates an image based on a previous image input.
Example: Super-resolution w/ Xenova/swin2SR-classical-sr-x2-64
const upscaler = await pipeline('image-to-image', 'Xenova/swin2SR-classical-sr-x2-64');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/butterfly.jpg';
const output = await upscaler(url);
// RawImage {
// data: Uint8Array(786432) [ 41, 31, 24, 43, ... ],
// width: 512,
// height: 512,
// channels: 3
// }
Kind: static class of pipelines
- .ImageToImagePipeline
new ImageToImagePipeline(options)
._call()
:ImageToImagePipelineCallback
new ImageToImagePipeline(options)
Create a new ImageToImagePipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
imageToImagePipeline._call() : <code> ImageToImagePipelineCallback </code>
Kind: instance method of ImageToImagePipeline
pipelines.DepthEstimationPipeline
Depth estimation pipeline using any AutoModelForDepthEstimation
. This pipeline predicts the depth of an image.
Example: Depth estimation w/ Xenova/dpt-hybrid-midas
const depth_estimator = await pipeline('depth-estimation', 'Xenova/dpt-hybrid-midas');
const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/v3.0.0/cats.jpg';
const out = await depth_estimator(url);
// {
// predicted_depth: Tensor {
// dims: [ 384, 384 ],
// type: 'float32',
// data: Float32Array(147456) [ 542.859130859375, 545.2833862304688, 546.1649169921875, ... ],
// size: 147456
// },
// depth: RawImage {
// data: Uint8Array(307200) [ 86, 86, 86, ... ],
// width: 640,
// height: 480,
// channels: 1
// }
// }
Kind: static class of pipelines
- .DepthEstimationPipeline
new DepthEstimationPipeline(options)
._call()
:DepthEstimationPipelineCallback
new DepthEstimationPipeline(options)
Create a new DepthEstimationPipeline.
Param | Type | Description |
---|---|---|
options | ImagePipelineConstructorArgs | An object used to instantiate the pipeline. |
depthEstimationPipeline._call() : <code> DepthEstimationPipelineCallback </code>
Kind: instance method of DepthEstimationPipeline
pipelines.pipeline(task, [model], [options]) ⇒ <code> * </code>
Utility factory method to build a Pipeline
object.
Kind: static method of pipelines
Returns: *
- A Pipeline object for the specified task.
Throws:
Error
If an unsupported pipeline is requested.
Param | Type | Default | Description |
---|---|---|---|
task | T | The task defining which pipeline will be returned. Currently accepted tasks are:
| |
[model] | string | null | The name of the pre-trained model to use. If not specified, the default model for the task will be used. |
[options] | * | Optional parameters for the pipeline. |
pipelines~ImagePipelineInputs : <code> string </code> | <code> RawImage </code> | <code> URL </code>
Kind: inner typedef of pipelines
pipelines~AudioPipelineInputs : <code> string </code> | <code> URL </code> | <code> Float32Array </code> | <code> Float64Array </code>
Kind: inner typedef of pipelines
pipelines~BoundingBox : <code> Object </code>
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
xmin | number | The minimum x coordinate of the bounding box. |
ymin | number | The minimum y coordinate of the bounding box. |
xmax | number | The maximum x coordinate of the bounding box. |
ymax | number | The maximum y coordinate of the bounding box. |
pipelines~Disposable ⇒ <code> Promise. < void > </code>
Kind: inner typedef of pipelines
Returns: Promise.<void>
- A promise that resolves when the item has been disposed.
Properties
Name | Type | Description |
---|---|---|
dispose | DisposeType | A promise that resolves when the pipeline has been disposed. |
pipelines~TextPipelineConstructorArgs : <code> Object </code>
An object used to instantiate a text-based pipeline.
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
tokenizer | PreTrainedTokenizer | The tokenizer used by the pipeline. |
pipelines~ImagePipelineConstructorArgs : <code> Object </code>
An object used to instantiate an audio-based pipeline.
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
processor | Processor | The processor used by the pipeline. |
pipelines~TextImagePipelineConstructorArgs : <code> Object </code>
An object used to instantiate a text- and audio-based pipeline.
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
task | string | The task of the pipeline. Useful for specifying subtasks. |
model | PreTrainedModel | The model used by the pipeline. |
tokenizer | PreTrainedTokenizer | The tokenizer used by the pipeline. |
processor | Processor | The processor used by the pipeline. |
pipelines~TextClassificationPipelineType ⇒ <code> Promise. < (TextClassificationOutput|Array < TextClassificationOutput > ) > </code>
Parameters specific to text classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(TextClassificationOutput|Array<TextClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
texts | string | Array<string> | The input text(s) to be classified. |
[options] | TextClassificationPipelineOptions | The options to use for text classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label predicted. | |
score | number | The corresponding probability. | |
[top_k] | number | 1 | The number of top predictions to be returned. |
pipelines~TokenClassificationPipelineType ⇒ <code> Promise. < (TokenClassificationOutput|Array < TokenClassificationOutput > ) > </code>
Parameters specific to token classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(TokenClassificationOutput|Array<TokenClassificationOutput>)>
- The result.
Param | Type | Description |
---|---|---|
texts | string | Array<string> | One or several texts (or one list of texts) for token classification. |
[options] | TokenClassificationPipelineOptions | The options to use for token classification. |
Properties
Name | Type | Description |
---|---|---|
word | string | The token/word classified. This is obtained by decoding the selected tokens. |
score | number | The corresponding probability for |
entity | string | The entity predicted for that token/word. |
index | number | The index of the corresponding token in the sentence. |
[start] | number | The index of the start of the corresponding entity in the sentence. |
[end] | number | The index of the end of the corresponding entity in the sentence. |
[ignore_labels] | Array.<string> | A list of labels to ignore. |
pipelines~QuestionAnsweringPipelineType ⇒ <code> Promise. < (QuestionAnsweringOutput|Array < QuestionAnsweringOutput > ) > </code>
Parameters specific to question answering pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(QuestionAnsweringOutput|Array<QuestionAnsweringOutput>)>
- An array or object containing the predicted answers and scores.
Param | Type | Description |
---|---|---|
question | string | Array<string> | One or several question(s) (must be used in conjunction with the |
context | string | Array<string> | One or several context(s) associated with the question(s) (must be used in conjunction with the |
[options] | QuestionAnsweringPipelineOptions | The options to use for question answering. |
Properties
Name | Type | Default | Description |
---|---|---|---|
score | number | The probability associated to the answer. | |
[start] | number | The character start index of the answer (in the tokenized version of the input). | |
[end] | number | The character end index of the answer (in the tokenized version of the input). | |
answer | string | The answer to the question. | |
[top_k] | number | 1 | The number of top answer predictions to be returned. |
pipelines~FillMaskPipelineType ⇒ <code> Promise. < (FillMaskOutput|Array < FillMaskOutput > ) > </code>
Parameters specific to fill mask pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(FillMaskOutput|Array<FillMaskOutput>)>
- An array of objects containing the score, predicted token, predicted token string,
and the sequence with the predicted token filled in, or an array of such arrays (one for each input text).
If only one input text is given, the output will be an array of objects.
Throws:
Error
When the mask token is not found in the input text.
Param | Type | Description |
---|---|---|
texts | string | Array<string> | One or several texts (or one list of prompts) with masked tokens. |
[options] | FillMaskPipelineOptions | The options to use for masked language modelling. |
Properties
Name | Type | Default | Description |
---|---|---|---|
sequence | string | The corresponding input with the mask token prediction. | |
score | number | The corresponding probability. | |
token | number | The predicted token id (to replace the masked one). | |
token_str | string | The predicted token (to replace the masked one). | |
[top_k] | number | 5 | When passed, overrides the number of predictions to return. |
pipelines~Text2TextGenerationPipelineType ⇒ <code> Promise. < (Text2TextGenerationOutput|Array < Text2TextGenerationOutput > ) > </code>
Kind: inner typedef of pipelines
Param | Type | Description |
---|---|---|
texts | string | Array<string> | Input text for the encoder. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
generated_text | string | The generated text. |
pipelines~SummarizationPipelineType ⇒ <code> Promise. < (SummarizationOutput|Array < SummarizationOutput > ) > </code>
Kind: inner typedef of pipelines
Param | Type | Description |
---|---|---|
texts | string | Array<string> | One or several articles (or one list of articles) to summarize. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
summary_text | string | The summary text. |
pipelines~TranslationPipelineType ⇒ <code> Promise. < (TranslationOutput|Array < TranslationOutput > ) > </code>
Kind: inner typedef of pipelines
Param | Type | Description |
---|---|---|
texts | string | Array<string> | Texts to be translated. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
translation_text | string | The translated text. |
pipelines~TextGenerationPipelineType ⇒ <code> Promise. < (TextGenerationOutput|Array < TextGenerationOutput > ) > </code>
Parameters specific to text-generation pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(TextGenerationOutput|Array<TextGenerationOutput>)>
- An array or object containing the generated texts.
Param | Type | Description |
---|---|---|
texts | string | Array<string> | Chat | Array<Chat> | One or several prompts (or one list of prompts) to complete. |
[options] | Partial.<TextGenerationConfig> | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Default | Description |
---|---|---|---|
generated_text | string | Chat | The generated text. | |
[add_special_tokens] | boolean | Whether or not to add special tokens when tokenizing the sequences. | |
[return_full_text] | boolean | true | If set to |
pipelines~ZeroShotClassificationPipelineType ⇒ <code> Promise. < (ZeroShotClassificationOutput|Array < ZeroShotClassificationOutput > ) > </code>
Parameters specific to zero-shot classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(ZeroShotClassificationOutput|Array<ZeroShotClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
texts | string | Array<string> | The sequence(s) to classify, will be truncated if the model input is too large. |
candidate_labels | string | Array<string> | The set of possible class labels to classify each sequence into. Can be a single label, a string of comma-separated labels, or a list of labels. |
[options] | ZeroShotClassificationPipelineOptions | The options to use for zero-shot classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
sequence | string | The sequence for which this is the output. | |
labels | Array.<string> | The labels sorted by order of likelihood. | |
scores | Array.<number> | The probabilities for each of the labels. | |
[hypothesis_template] | string | ""This example is {}."" | The template used to turn each candidate label into an NLI-style hypothesis. The candidate label will replace the {} placeholder. |
[multi_label] | boolean | false | Whether or not multiple candidate labels can be true.
If |
pipelines~FeatureExtractionPipelineType ⇒ <code> Promise. < Tensor > </code>
Parameters specific to feature extraction pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<Tensor>
- The features computed by the model.
Param | Type | Description |
---|---|---|
texts | string | Array<string> | One or several texts (or one list of texts) to get the features of. |
[options] | FeatureExtractionPipelineOptions | The options to use for feature extraction. |
Properties
Name | Type | Default | Description |
---|---|---|---|
[pooling] | 'none' | 'mean' | 'cls' | "none" | The pooling method to use. |
[normalize] | boolean | false | Whether or not to normalize the embeddings in the last dimension. |
[quantize] | boolean | false | Whether or not to quantize the embeddings. |
[precision] | 'binary' | 'ubinary' | 'binary' | The precision to use for quantization. |
pipelines~ImageFeatureExtractionPipelineType ⇒ <code> Promise. < Tensor > </code>
Parameters specific to image feature extraction pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<Tensor>
- The image features computed by the model.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | One or several images (or one list of images) to get the features of. |
[options] | ImageFeatureExtractionPipelineOptions | The options to use for image feature extraction. |
Properties
Name | Type | Default | Description |
---|---|---|---|
[pool] | boolean |
| Whether or not to return the pooled output. If set to |
pipelines~AudioClassificationPipelineType ⇒ <code> Promise. < (AudioClassificationOutput|Array < AudioClassificationOutput > ) > </code>
Parameters specific to audio classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(AudioClassificationOutput|Array<AudioClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be classified. The input is either:
|
[options] | AudioClassificationPipelineOptions | The options to use for audio classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label predicted. | |
score | number | The corresponding probability. | |
[top_k] | number | 5 | The number of top labels that will be returned by the pipeline.
If the provided number is |
pipelines~ZeroShotAudioClassificationPipelineType ⇒ <code> Promise. < (Array < ZeroShotAudioClassificationOutput > |Array < Array < ZeroShotAudioClassificationOutput > > ) > </code>
Parameters specific to zero-shot audio classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(Array<ZeroShotAudioClassificationOutput>|Array<Array<ZeroShotAudioClassificationOutput>>)>
- An array of objects containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be classified. The input is either:
|
candidate_labels | Array.<string> | The candidate labels for this audio. |
[options] | ZeroShotAudioClassificationPipelineOptions | The options to use for zero-shot audio classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. It is one of the suggested | |
score | number | The score attributed by the model for that label (between 0 and 1). | |
[hypothesis_template] | string | ""This is a sound of {}."" | The sentence used in conjunction with |
pipelines~Chunk : <code> Object </code>
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
timestamp | * | The start and end timestamp of the chunk in seconds. |
text | string | The recognized text. |
pipelines~AutomaticSpeechRecognitionPipelineType ⇒ <code> Promise. < (AutomaticSpeechRecognitionOutput|Array < AutomaticSpeechRecognitionOutput > ) > </code>
Parameters specific to automatic-speech-recognition pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(AutomaticSpeechRecognitionOutput|Array<AutomaticSpeechRecognitionOutput>)>
- An object containing the transcription text and optionally timestamps if return_timestamps
is true
.
Param | Type | Description |
---|---|---|
audio | AudioPipelineInputs | The input audio file(s) to be transcribed. The input is either:
|
[options] | Partial.<AutomaticSpeechRecognitionConfig> | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
text | string | The recognized text. |
[chunks] | Array.<Chunk> | When using |
[return_timestamps] | boolean | 'word' | Whether to return timestamps or not. Default is |
[chunk_length_s] | number | The length of audio chunks to process in seconds. Default is 0 (no chunking). |
[stride_length_s] | number | The length of overlap between consecutive audio chunks in seconds. If not provided, defaults to |
[force_full_sequences] | boolean | Whether to force outputting full sequences or not. Default is |
[language] | string | The source language. Default is |
[task] | string | The task to perform. Default is |
[num_frames] | number | The number of frames in the input audio. |
pipelines~ImageToTextPipelineType ⇒ <code> Promise. < (ImageToTextOutput|Array < ImageToTextOutput > ) > </code>
Kind: inner typedef of pipelines
Returns: Promise.<(ImageToTextOutput|Array<ImageToTextOutput>)>
- An object (or array of objects) containing the generated text(s).
Param | Type | Description |
---|---|---|
texts | ImagePipelineInputs | The images to be captioned. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
generated_text | string | The generated text. |
pipelines~ImageClassificationPipelineType ⇒ <code> Promise. < (ImageClassificationOutput|Array < ImageClassificationOutput > ) > </code>
Parameters specific to image classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(ImageClassificationOutput|Array<ImageClassificationOutput>)>
- An array or object containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images(s) to be classified. |
[options] | ImageClassificationPipelineOptions | The options to use for image classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. | |
score | number | The score attributed by the model for that label. | |
[top_k] | number | 1 | The number of top labels that will be returned by the pipeline. |
pipelines~ImageSegmentationPipelineType ⇒ <code> Promise. < Array < ImageSegmentationPipelineOutput > > </code>
Parameters specific to image segmentation pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<Array<ImageSegmentationPipelineOutput>>
- The annotated segments.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | ImageSegmentationPipelineOptions | The options to use for image segmentation. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label of the segment. | |
score | number | null | The score of the segment. | |
mask | RawImage | The mask of the segment. | |
[threshold] | number | 0.5 | Probability threshold to filter out predicted masks. |
[mask_threshold] | number | 0.5 | Threshold to use when turning the predicted masks into binary values. |
[overlap_mask_area_threshold] | number | 0.8 | Mask overlap threshold to eliminate small, disconnected segments. |
[subtask] | null | string |
| Segmentation task to be performed. One of [ |
[label_ids_to_fuse] | Array.<number> |
| List of label ids to fuse. If not set, do not fuse any labels. |
[target_sizes] | Array.<Array<number>> |
| List of target sizes for the input images. If not set, use the original image sizes. |
pipelines~ZeroShotImageClassificationPipelineType ⇒ <code> Promise. < (Array < ZeroShotImageClassificationOutput > |Array < Array < ZeroShotImageClassificationOutput > > ) > </code>
Parameters specific to zero-shot image classification pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(Array<ZeroShotImageClassificationOutput>|Array<Array<ZeroShotImageClassificationOutput>>)>
- An array of objects containing the predicted labels and scores.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
candidate_labels | Array.<string> | The candidate labels for this image. |
[options] | ZeroShotImageClassificationPipelineOptions | The options to use for zero-shot image classification. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The label identified by the model. It is one of the suggested | |
score | number | The score attributed by the model for that label (between 0 and 1). | |
[hypothesis_template] | string | ""This is a photo of {}"" | The sentence used in conjunction with |
pipelines~ObjectDetectionPipelineType ⇒ <code> Promise. < (ObjectDetectionPipelineOutput|Array < ObjectDetectionPipelineOutput > ) > </code>
Parameters specific to object detection pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(ObjectDetectionPipelineOutput|Array<ObjectDetectionPipelineOutput>)>
- A list of objects or a list of list of objects.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
[options] | ObjectDetectionPipelineOptions | The options to use for object detection. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | The class label identified by the model. | |
score | number | The score attributed by the model for that label. | |
box | BoundingBox | The bounding box of detected object in image's original size, or as a percentage if | |
[threshold] | number | 0.9 | The threshold used to filter boxes by score. |
[percentage] | boolean | false | Whether to return the boxes coordinates in percentage (true) or in pixels (false). |
pipelines~ZeroShotObjectDetectionPipelineType ⇒ <code> Promise. < (Array < ZeroShotObjectDetectionOutput > |Array < Array < ZeroShotObjectDetectionOutput > > ) > </code>
Parameters specific to zero-shot object detection pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<(Array<ZeroShotObjectDetectionOutput>|Array<Array<ZeroShotObjectDetectionOutput>>)>
- An array of objects containing the predicted labels, scores, and bounding boxes.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The input images. |
candidate_labels | Array.<string> | What the model should recognize in the image. |
[options] | ZeroShotObjectDetectionPipelineOptions | The options to use for zero-shot object detection. |
Properties
Name | Type | Default | Description |
---|---|---|---|
label | string | Text query corresponding to the found object. | |
score | number | Score corresponding to the object (between 0 and 1). | |
box | BoundingBox | Bounding box of the detected object in image's original size, or as a percentage if | |
[threshold] | number | 0.1 | The probability necessary to make a prediction. |
[top_k] | number |
| The number of top predictions that will be returned by the pipeline.
If the provided number is |
[percentage] | boolean | false | Whether to return the boxes coordinates in percentage (true) or in pixels (false). |
pipelines~DocumentQuestionAnsweringPipelineType ⇒ <code> Promise. < (DocumentQuestionAnsweringOutput|Array < DocumentQuestionAnsweringOutput > ) > </code>
Kind: inner typedef of pipelines
Returns: Promise.<(DocumentQuestionAnsweringOutput|Array<DocumentQuestionAnsweringOutput>)>
- An object (or array of objects) containing the answer(s).
Param | Type | Description |
---|---|---|
image | ImageInput | The image of the document to use. |
question | string | A question to ask of the document. |
[options] | * | Additional keyword arguments to pass along to the generate method of the model. |
Properties
Name | Type | Description |
---|---|---|
answer | string | The generated text. |
pipelines~TextToAudioPipelineConstructorArgs : <code> Object </code>
Kind: inner typedef of pipelines
Properties
Name | Type | Description |
---|---|---|
[vocoder] | PreTrainedModel | The vocoder used by the pipeline (if the model uses one). If not provided, use the default HifiGan vocoder. |
pipelines~TextToAudioPipelineType ⇒ <code> Promise. < TextToAudioOutput > </code>
Parameters specific to text-to-audio pipelines.
Kind: inner typedef of pipelines
Returns: Promise.<TextToAudioOutput>
- An object containing the generated audio and sampling rate.
Param | Type | Description |
---|---|---|
texts | string | Array<string> | The text(s) to generate. |
options | TextToAudioPipelineOptions | Parameters passed to the model generation/forward method. |
Properties
Name | Type | Default | Description |
---|---|---|---|
audio | Float32Array | The generated audio waveform. | |
sampling_rate | number | The sampling rate of the generated audio waveform. | |
[speaker_embeddings] | Tensor | Float32Array | string | URL |
| The speaker embeddings (if the model requires it). |
pipelines~ImageToImagePipelineType ⇒ <code> Promise. < (RawImage|Array < RawImage > ) > </code>
Kind: inner typedef of pipelines
Returns: Promise.<(RawImage|Array<RawImage>)>
- The transformed image or list of images.
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The images to transform. |
pipelines~DepthEstimationPipelineType ⇒ <code> Promise. < (DepthEstimationPipelineOutput|Array < DepthEstimationPipelineOutput > ) > </code>
Kind: inner typedef of pipelines
Returns: Promise.<(DepthEstimationPipelineOutput|Array<DepthEstimationPipelineOutput>)>
- An image or a list of images containing result(s).
Param | Type | Description |
---|---|---|
images | ImagePipelineInputs | The images to compute depth for. |
Properties
Name | Type | Description |
---|---|---|
predicted_depth | Tensor | The raw depth map predicted by the model. |
depth | RawImage | The processed depth map as an image (with the same size as the input image). |
pipelines~AllTasks : <code> * </code>
All possible pipeline types.
Kind: inner typedef of pipelines
< > Update on GitHub