Transformers documentation

TextNet

You are viewing main version, which requires installation from source. If you'd like regular pip install, checkout the latest stable version (v4.48.0).
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

TextNet

Overview

The TextNet model was proposed in FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist Kernel Representation by Zhe Chen, Jiahao Wang, Wenhai Wang, Guo Chen, Enze Xie, Ping Luo, Tong Lu. TextNet is a vision backbone useful for text detection tasks. It is the result of neural architecture search (NAS) on backbones with reward function as text detection task (to provide powerful features for text detection).

drawing TextNet backbone as part of FAST. Taken from the original paper.

This model was contributed by Raghavan, jadechoghari and nielsr.

Usage tips

TextNet is mainly used as a backbone network for the architecture search of text detection. Each stage of the backbone network is comprised of a stride-2 convolution and searchable blocks. Specifically, we present a layer-level candidate set, defined as {conv3Γ—3, conv1Γ—3, conv3Γ—1, identity}. As the 1Γ—3 and 3Γ—1 convolutions have asymmetric kernels and oriented structure priors, they may help to capture the features of extreme aspect-ratio and rotated text lines.

TextNet is the backbone for Fast, but can also be used as an efficient text/image classification, we add a TextNetForImageClassification as is it would allow people to train an image classifier on top of the pre-trained textnet weights

TextNetConfig

class transformers.TextNetConfig

< >

( stem_kernel_size = 3 stem_stride = 2 stem_num_channels = 3 stem_out_channels = 64 stem_act_func = 'relu' image_size = [640, 640] conv_layer_kernel_sizes = None conv_layer_strides = None hidden_sizes = [64, 64, 128, 256, 512] batch_norm_eps = 1e-05 initializer_range = 0.02 out_features = None out_indices = None **kwargs )

Parameters

  • stem_kernel_size (int, optional, defaults to 3) — The kernel size for the initial convolution layer.
  • stem_stride (int, optional, defaults to 2) — The stride for the initial convolution layer.
  • stem_num_channels (int, optional, defaults to 3) — The num of channels in input for the initial convolution layer.
  • stem_out_channels (int, optional, defaults to 64) — The num of channels in out for the initial convolution layer.
  • stem_act_func (str, optional, defaults to "relu") — The activation function for the initial convolution layer.
  • image_size (Tuple[int, int], optional, defaults to [640, 640]) — The size (resolution) of each image.
  • conv_layer_kernel_sizes (List[List[List[int]]], optional) — A list of stage-wise kernel sizes. If None, defaults to: [[[3, 3], [3, 3], [3, 3]], [[3, 3], [1, 3], [3, 3], [3, 1]], [[3, 3], [3, 3], [3, 1], [1, 3]], [[3, 3], [3, 1], [1, 3], [3, 3]]].
  • conv_layer_strides (List[List[int]], optional) — A list of stage-wise strides. If None, defaults to: [[1, 2, 1], [2, 1, 1, 1], [2, 1, 1, 1], [2, 1, 1, 1]].
  • hidden_sizes (List[int], optional, defaults to [64, 64, 128, 256, 512]) — Dimensionality (hidden size) at each stage.
  • batch_norm_eps (float, optional, defaults to 1e-05) — The epsilon used by the batch normalization layers.
  • initializer_range (float, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
  • out_features (List[str], optional) — If used as backbone, list of features to output. Can be any of "stem", "stage1", "stage2", etc. (depending on how many stages the model has). If unset and out_indices is set, will default to the corresponding stages. If unset and out_indices is unset, will default to the last stage.
  • out_indices (List[int], optional) — If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how many stages the model has). If unset and out_features is set, will default to the corresponding stages. If unset and out_features is unset, will default to the last stage.

This is the configuration class to store the configuration of a TextNextModel. It is used to instantiate a TextNext model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the czczup/textnet-base. Configuration objects inherit from PretrainedConfig and can be used to control the model outputs.Read the documentation from PretrainedConfig for more information.

Examples:

>>> from transformers import TextNetConfig, TextNetBackbone

>>> # Initializing a TextNetConfig
>>> configuration = TextNetConfig()

>>> # Initializing a model (with random weights)
>>> model = TextNetBackbone(configuration)

>>> # Accessing the model configuration
>>> configuration = model.config

TextNetImageProcessor

class transformers.TextNetImageProcessor

< >

( do_resize: bool = True size: typing.Dict[str, int] = None size_divisor: int = 32 resample: Resampling = <Resampling.BILINEAR: 2> do_center_crop: bool = False crop_size: typing.Dict[str, int] = None do_rescale: bool = True rescale_factor: typing.Union[int, float] = 0.00392156862745098 do_normalize: bool = True image_mean: typing.Union[float, typing.List[float], NoneType] = [0.485, 0.456, 0.406] image_std: typing.Union[float, typing.List[float], NoneType] = [0.229, 0.224, 0.225] do_convert_rgb: bool = True **kwargs )

Parameters

  • do_resize (bool, optional, defaults to True) — Whether to resize the image’s (height, width) dimensions to the specified size. Can be overridden by do_resize in the preprocess method.
  • size (Dict[str, int] optional, defaults to {"shortest_edge" -- 640}): Size of the image after resizing. The shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio. Can be overridden by size in the preprocess method.
  • size_divisor (int, optional, defaults to 32) — Ensures height and width are rounded to a multiple of this value after resizing.
  • resample (PILImageResampling, optional, defaults to Resampling.BILINEAR) — Resampling filter to use if resizing the image. Can be overridden by resample in the preprocess method.
  • do_center_crop (bool, optional, defaults to False) — Whether to center crop the image to the specified crop_size. Can be overridden by do_center_crop in the preprocess method.
  • crop_size (Dict[str, int] optional, defaults to 224) — Size of the output image after applying center_crop. Can be overridden by crop_size in the preprocess method.
  • do_rescale (bool, optional, defaults to True) — Whether to rescale the image by the specified scale rescale_factor. Can be overridden by do_rescale in the preprocess method.
  • rescale_factor (int or float, optional, defaults to 1/255) — Scale factor to use if rescaling the image. Can be overridden by rescale_factor in the preprocess method.
  • do_normalize (bool, optional, defaults to True) — Whether to normalize the image. Can be overridden by do_normalize in the preprocess method.
  • image_mean (float or List[float], optional, defaults to [0.485, 0.456, 0.406]) — Mean to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_mean parameter in the preprocess method.
  • image_std (float or List[float], optional, defaults to [0.229, 0.224, 0.225]) — Standard deviation to use if normalizing the image. This is a float or list of floats the length of the number of channels in the image. Can be overridden by the image_std parameter in the preprocess method. Can be overridden by the image_std parameter in the preprocess method.
  • do_convert_rgb (bool, optional, defaults to True) — Whether to convert the image to RGB.

Constructs a TextNet image processor.

preprocess

< >

( images: typing.Union[ForwardRef('PIL.Image.Image'), numpy.ndarray, ForwardRef('torch.Tensor'), typing.List[ForwardRef('PIL.Image.Image')], typing.List[numpy.ndarray], typing.List[ForwardRef('torch.Tensor')]] do_resize: bool = None size: typing.Dict[str, int] = None size_divisor: int = None resample: Resampling = None do_center_crop: bool = None crop_size: int = None do_rescale: bool = None rescale_factor: float = None do_normalize: bool = None image_mean: typing.Union[float, typing.List[float], NoneType] = None image_std: typing.Union[float, typing.List[float], NoneType] = None do_convert_rgb: bool = None return_tensors: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None data_format: typing.Optional[transformers.image_utils.ChannelDimension] = <ChannelDimension.FIRST: 'channels_first'> input_data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None **kwargs )

Parameters

  • images (ImageInput) — Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set do_rescale=False.
  • do_resize (bool, optional, defaults to self.do_resize) — Whether to resize the image.
  • size (Dict[str, int], optional, defaults to self.size) — Size of the image after resizing. Shortest edge of the image is resized to size[“shortest_edge”], with the longest edge resized to keep the input aspect ratio.
  • size_divisor (int, optional, defaults to 32) — Ensures height and width are rounded to a multiple of this value after resizing.
  • resample (int, optional, defaults to self.resample) — Resampling filter to use if resizing the image. This can be one of the enum PILImageResampling. Only has an effect if do_resize is set to True.
  • do_center_crop (bool, optional, defaults to self.do_center_crop) — Whether to center crop the image.
  • crop_size (Dict[str, int], optional, defaults to self.crop_size) — Size of the center crop. Only has an effect if do_center_crop is set to True.
  • do_rescale (bool, optional, defaults to self.do_rescale) — Whether to rescale the image.
  • rescale_factor (float, optional, defaults to self.rescale_factor) — Rescale factor to rescale the image by if do_rescale is set to True.
  • do_normalize (bool, optional, defaults to self.do_normalize) — Whether to normalize the image.
  • image_mean (float or List[float], optional, defaults to self.image_mean) — Image mean to use for normalization. Only has an effect if do_normalize is set to True.
  • image_std (float or List[float], optional, defaults to self.image_std) — Image standard deviation to use for normalization. Only has an effect if do_normalize is set to True.
  • do_convert_rgb (bool, optional, defaults to self.do_convert_rgb) — Whether to convert the image to RGB.
  • return_tensors (str or TensorType, optional) — The type of tensors to return. Can be one of:
    • Unset: Return a list of np.ndarray.
    • TensorType.TENSORFLOW or 'tf': Return a batch of type tf.Tensor.
    • TensorType.PYTORCH or 'pt': Return a batch of type torch.Tensor.
    • TensorType.NUMPY or 'np': Return a batch of type np.ndarray.
    • TensorType.JAX or 'jax': Return a batch of type jax.numpy.ndarray.
  • data_format (ChannelDimension or str, optional, defaults to ChannelDimension.FIRST) — The channel dimension format for the output image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • Unset: Use the channel dimension format of the input image.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
    • "none" or ChannelDimension.NONE: image in (height, width) format.

Preprocess an image or batch of images.

TextNetModel

class transformers.TextNetModel

< >

( config )

Parameters

  • config (TextNetConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

The bare Textnet model outputting raw features without any specific head on top. This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( pixel_values: Tensor output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See TextNetImageProcessor.call() for details.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.

Returns

transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or tuple(torch.FloatTensor)

A transformers.modeling_outputs.BaseModelOutputWithPoolingAndNoAttention or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (TextNetConfig) and inputs.

  • last_hidden_state (torch.FloatTensor of shape (batch_size, num_channels, height, width)) β€” Sequence of hidden-states at the output of the last layer of the model.

  • pooler_output (torch.FloatTensor of shape (batch_size, hidden_size)) β€” Last layer hidden-state after a pooling operation on the spatial dimensions.

  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) β€” Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape (batch_size, num_channels, height, width).

    Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.

The TextNetModel forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Example:

>>> from transformers import AutoImageProcessor, TextNetModel
>>> import torch
>>> from datasets import load_dataset

>>> dataset = load_dataset("huggingface/cats-image", trust_remote_code=True)
>>> image = dataset["test"]["image"][0]

>>> image_processor = AutoImageProcessor.from_pretrained("czczup/textnet-base")
>>> model = TextNetModel.from_pretrained("czczup/textnet-base")

>>> inputs = image_processor(image, return_tensors="pt")

>>> with torch.no_grad():
...     outputs = model(**inputs)

>>> last_hidden_states = outputs.last_hidden_state
>>> list(last_hidden_states.shape)
[1, 512, 20, 27]

TextNetForImageClassification

class transformers.TextNetForImageClassification

< >

( config )

Parameters

  • config (TextNetConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.

TextNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet.

This model is a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.

forward

< >

( pixel_values: typing.Optional[torch.FloatTensor] = None labels: typing.Optional[torch.LongTensor] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) β†’ transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

Parameters

  • pixel_values (torch.FloatTensor of shape (batch_size, num_channels, height, width)) — Pixel values. Pixel values can be obtained using AutoImageProcessor. See TextNetImageProcessor.call() for details.
  • output_hidden_states (bool, optional) — Whether or not to return the hidden states of all layers. See hidden_states under returned tensors for more detail.
  • return_dict (bool, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
  • labels (torch.LongTensor of shape (batch_size,), optional) — Labels for computing the image classification/regression loss. Indices should be in [0, ..., config.num_labels - 1]. If config.num_labels == 1 a regression loss is computed (Mean-Square loss), If config.num_labels > 1 a classification loss is computed (Cross-Entropy).

Returns

transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or tuple(torch.FloatTensor)

A transformers.modeling_outputs.ImageClassifierOutputWithNoAttention or a tuple of torch.FloatTensor (if return_dict=False is passed or when config.return_dict=False) comprising various elements depending on the configuration (TextNetConfig) and inputs.

  • loss (torch.FloatTensor of shape (1,), optional, returned when labels is provided) β€” Classification (or regression if config.num_labels==1) loss.
  • logits (torch.FloatTensor of shape (batch_size, config.num_labels)) β€” Classification (or regression if config.num_labels==1) scores (before SoftMax).
  • hidden_states (tuple(torch.FloatTensor), optional, returned when output_hidden_states=True is passed or when config.output_hidden_states=True) β€” Tuple of torch.FloatTensor (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each stage) of shape (batch_size, num_channels, height, width). Hidden-states (also called feature maps) of the model at the output of each stage.

The TextNetForImageClassification forward method, overrides the __call__ special method.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the pre and post processing steps while the latter silently ignores them.

Examples:

>>> import torch
>>> import requests
>>> from transformers import TextNetForImageClassification, TextNetImageProcessor
>>> from PIL import Image

>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)

>>> processor = TextNetImageProcessor.from_pretrained("czczup/textnet-base")
>>> model = TextNetForImageClassification.from_pretrained("czczup/textnet-base")

>>> inputs = processor(images=image, return_tensors="pt")
>>> with torch.no_grad():
...     outputs = model(**inputs)
>>> outputs.logits.shape
torch.Size([1, 2])
< > Update on GitHub