You are viewing main version, which requires installation from source. If you'd like
regular pip install, checkout the latest stable version (v4.48.0).
基于BERT进行的相关研究(BERTology)
当前,一个新兴的研究领域正致力于探索大规模 transformer 模型(如BERT)的内部工作机制,一些人称之为“BERTology”。以下是这个领域的一些典型示例:
- BERT Rediscovers the Classical NLP Pipeline by Ian Tenney, Dipanjan Das, Ellie Pavlick: https://arxiv.org/abs/1905.05950
- Are Sixteen Heads Really Better than One? by Paul Michel, Omer Levy, Graham Neubig: https://arxiv.org/abs/1905.10650
- What Does BERT Look At? An Analysis of BERT’s Attention by Kevin Clark, Urvashi Khandelwal, Omer Levy, Christopher D. Manning: https://arxiv.org/abs/1906.04341
- CAT-probing: A Metric-based Approach to Interpret How Pre-trained Models for Programming Language Attend Code Structure: https://arxiv.org/abs/2210.04633
为了助力这一新兴领域的发展,我们在BERT/GPT/GPT-2模型中增加了一些附加功能,方便人们访问其内部表示,这些功能主要借鉴了Paul Michel的杰出工作(https://arxiv.org/abs/1905.10650):
- 访问BERT/GPT/GPT-2的所有隐藏状态,
- 访问BERT/GPT/GPT-2每个注意力头的所有注意力权重,
- 检索注意力头的输出值和梯度,以便计算头的重要性得分并对头进行剪枝,详情可见论文:https://arxiv.org/abs/1905.10650。
为了帮助您理解和使用这些功能,我们添加了一个具体的示例脚本:bertology.py,该脚本可以对一个在 GLUE 数据集上预训练的模型进行信息提取与剪枝。
< > Update on GitHub