gemma-alpacha

yahma/alpaca-cleaned finetuned with gemma-7b-bnb-4bit

Usage

pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
from unsloth import FastLanguageModel
model, tokenizer = FastLanguageModel.from_pretrained("gnumanth/gemma-unsloth-alpaca")
alpaca_prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{}

### Input:
{}

### Response:
{}"""
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
inputs = tokenizer(
[
    alpaca_prompt.format(
        "Give me a python code for quicksort", # instruction
        "1,-1,0,8,9,-2,2", # input
        "", # output - leave this blank for generation!
    )
], return_tensors = "pt").to("cuda")

from transformers import TextStreamer
text_streamer = TextStreamer(tokenizer)
_ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
<bos>Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Give me a python code for quicksort

### Input:
1,-1,0,8,9,-2,2

### Response:
def quicksort(arr):
    if len(arr) <= 1:
        return arr
    pivot = arr[0]
    left = [i for i in arr[1:] if i < pivot]
    right = [i for i in arr[1:] if i >= pivot]
    return quicksort(left) + [pivot] + quicksort(right)<eos>

Hemanth HMM | (Built with unsloth)

Downloads last month
12
Safetensors
Model size
8.54B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for gnumanth/gemma-unsloth-alpaca

Finetuned
(217)
this model