phi 1.5 finetune on airoboros-3.1-no-mathjson-max-1k (a subset of airoboros-3.1) using qlora.
train metrics
- epoch = 3.0
- train_loss = 1.1384
- train_runtime = 5:25:54.30
- train_samples_per_second = 3.065
- train_steps_per_second = 0.191
eval metrics
- epoch = 3.0
- eval_loss = 0.8639
- eval_runtime = 0:00:26.59
- eval_samples_per_second = 7.596
- eval_steps_per_second = 1.918
SFT code: https://github.com/habanoz/qlora.git
command:
accelerate launch $BASE_DIR/qlora/train.py \
--model_name_or_path $BASE_MODEL \
--working_dir $BASE_DIR/$OUTPUT_NAME-checkpoints \
--output_dir $BASE_DIR/$OUTPUT_NAME-peft \
--merged_output_dir $BASE_DIR/$OUTPUT_NAME \
--final_output_dir $BASE_DIR/$OUTPUT_NAME-final \
--num_train_epochs 3 \
--logging_steps 1 \
--save_strategy steps \
--save_steps 120 \
--save_total_limit 2 \
--data_seed 11422 \
--evaluation_strategy steps \
--per_device_eval_batch_size 4 \
--eval_dataset_size 0.01 \
--eval_steps 120 \
--max_new_tokens 1024 \
--dataloader_num_workers 3 \
--logging_strategy steps \
--do_train \
--do_eval \
--lora_r 64 \
--lora_alpha 16 \
--lora_modules all \
--bits 4 \
--double_quant \
--quant_type nf4 \
--lr_scheduler_type constant \
--dataset habanoz/airoboros-3.1-no-mathjson-max-1k \
--dataset_format airoboros_chat \
--model_max_len 1024 \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 16 \
--learning_rate 1e-5 \
--adam_beta2 0.999 \
--max_grad_norm 0.3 \
--lora_dropout 0.0 \
--weight_decay 0.0 \
--seed 11422 \
--gradient_checkpointing False \
--use_flash_attention_2 \
--ddp_find_unused_parameters False \
--trust_remote_code True
- Downloads last month
- 20
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for habanoz/phi-1_5-lr-5-3epch-airoboros3.1-1k-instruct-V1
Base model
microsoft/phi-1_5