Model Information
Intended Use
How to use
Use with transformers
Starting with transformers >= 4.45.0 onward, you can run inference using conversational messages that may include an image you can query about.
Make sure to update your transformers installation via pip install --upgrade transformers
.
import requests
import torch
from PIL import Image
from transformers import MllamaForConditionalGeneration, AutoProcessor
model_id = "meta-llama/Llama-3.2-11B-Vision-Instruct"
model = MllamaForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
device_map="auto",
)
processor = AutoProcessor.from_pretrained(model_id)
url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg"
image = Image.open(requests.get(url, stream=True).raw)
messages = [
{"role": "user", "content": [
{"type": "image"},
{"type": "text", "text": "If I had to write a haiku for this one, it would be: "}
]}
]
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(
image,
input_text,
add_special_tokens=False,
return_tensors="pt"
).to(model.device)
output = model.generate(**inputs, max_new_tokens=30)
print(processor.decode(output[0]))
Use with llama
Training Data
Overview: Llama 3.2-Vision was pretrained on 6B image and text pairs. The instruction tuning data includes publicly available vision instruction datasets, as well as over 3M synthetically generated examples.
Data Freshness: The pretraining data has a cutoff of December 2023.
Benchmarks - Image Reasoning
- Downloads last month
- 13
Model tree for jrc/Llama-3.2-11B-DataVizQA
Base model
meta-llama/Llama-3.2-11B-Vision-Instruct