Greek to English NMT (lower-case output)

By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)

Model description

Trained using the Fairseq framework, transformer_iwslt_de_en architecture.\ BPE segmentation (10k codes).\ Lower-case model.

How to use

from transformers import FSMTTokenizer, FSMTForConditionalGeneration

mname = " <your_downloaded_model_folderpath_here> "

tokenizer = FSMTTokenizer.from_pretrained(mname)
model = FSMTForConditionalGeneration.from_pretrained(mname)

text = "Η τύχη βοηθάει τους τολμηρούς."

encoded = tokenizer.encode(text, return_tensors='pt')

outputs = model.generate(encoded, num_beams=5, num_return_sequences=5, early_stopping=True)
for i, output in enumerate(outputs):
    i += 1
    print(f"{i}: {output.tolist()}")
    
    decoded = tokenizer.decode(output, skip_special_tokens=True)
    print(f"{i}: {decoded}")

Training data

Consolidated corpus from Opus and CC-Matrix (~6.6GB in total)

Eval results

Results on Tatoeba testset (EL-EN):

BLEU chrF
79.3 0.795

Results on XNLI parallel (EL-EN):

BLEU chrF
66.2 0.623

BibTeX entry and citation info

Dimitris Papadopoulos, et al. "PENELOPIE: Enabling Open Information Extraction for the Greek Language through Machine Translation." (2021). Accepted at EACL 2021 SRW

Acknowledgement

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.