LLaVa-Next, leveraging NousResearch/Nous-Hermes-2-Yi-34B as LLM
The LLaVA-NeXT model was proposed in LLaVA-NeXT: Improved reasoning, OCR, and world knowledge by Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, Yong Jae Lee. LLaVa-NeXT (also called LLaVa-1.6) improves upon LLaVa by increasing the input image resolution and training on an improved visual instruction tuning dataset to improve OCR and common sense reasoning.
Disclaimer: The team releasing LLaVa-NeXT did not write a model card for this model so this model card has been written by the Hugging Face team.
Model description
LLaVa combines a pre-trained large language model with a pre-trained vision encoder for multimodal chatbot use cases. LLaVA 1.6 improves on LLaVA 1.5 BY:
- Using Mistral-7B and Nous-Hermes-2-Yi-34B (for this checkpoint) which has better commercial licenses, and bilingual support
- More diverse and high quality data mixture
- Dynamic high resolution
Intended uses & limitations
You can use the raw model for tasks like image captioning, visual question answering, multimodal chatbot use cases. See the model hub to look for other versions on a task that interests you.
How to use
Here's the prompt template for this model but we recommend to use chat templates to format the prompt with processor.apply_chat_template()
.
That will apply the correct template for a given checkpoint for you.
"<|im_start|>system\n<your_system_prompt_here><|im_end|><|im_start|>user\n<image>\n<your_text_prompt_here><|im_end|><|im_start|>assistant\n"
To run the model with the pipeline
, see the below example:
from transformers import pipeline
pipe = pipeline("image-text-to-text", model="llava-hf/llava-v1.6-34b-hf")
messages = [
{
"role": "user",
"content": [
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg"},
{"type": "text", "text": "What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud"},
],
},
]
out = pipe(text=messages, max_new_tokens=20)
print(out)
>>> [{'input_text': [{'role': 'user', 'content': [{'type': 'image', 'url': 'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/ai2d-demo.jpg'}, {'type': 'text', 'text': 'What does the label 15 represent? (1) lava (2) core (3) tunnel (4) ash cloud'}]}], 'generated_text': 'Lava'}]
You can also load and use the model like following:
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import torch
from PIL import Image
import requests
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-34b-hf")
model = LlavaNextForConditionalGeneration.from_pretrained("llava-hf/llava-v1.6-34b-hf", torch_dtype=torch.float16, low_cpu_mem_usage=True)
model.to("cuda:0")
# prepare image and text prompt, using the appropriate prompt template
url = "https://github.com/haotian-liu/LLaVA/blob/1a91fc274d7c35a9b50b3cb29c4247ae5837ce39/images/llava_v1_5_radar.jpg?raw=true"
image = Image.open(requests.get(url, stream=True).raw)
# Define a chat histiry and use `apply_chat_template` to get correctly formatted prompt
# Each value in "content" has to be a list of dicts with types ("text", "image")
conversation = [
{
"role": "user",
"content": [
{"type": "text", "text": "What is shown in this image?"},
{"type": "image"},
],
},
]
prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)
inputs = processor(images=image, text=prompt, return_tensors="pt").to("cuda:0")
# autoregressively complete prompt
output = model.generate(**inputs, max_new_tokens=100)
print(processor.decode(output[0], skip_special_tokens=True))
Model optimization
4-bit quantization through bitsandbytes
library
First make sure to install bitsandbytes
, pip install bitsandbytes
and make sure to have access to a CUDA compatible GPU device. Simply change the snippet above with:
model = LlavaNextForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ load_in_4bit=True
)
Use Flash-Attention 2 to further speed-up generation
First make sure to install flash-attn
. Refer to the original repository of Flash Attention regarding that package installation. Simply change the snippet above with:
model = LlavaNextForConditionalGeneration.from_pretrained(
model_id,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
+ use_flash_attention_2=True
).to(0)
BibTeX entry and citation info
@misc{liu2023improved,
title={Improved Baselines with Visual Instruction Tuning},
author={Haotian Liu and Chunyuan Li and Yuheng Li and Yong Jae Lee},
year={2023},
eprint={2310.03744},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 2,310