Pythia-1b supervised finetuned using TRLx library with the helpful subset of Anthropic-hh-rlhf dataset for 1 epoch.

Checkpoints are also uploaded.

Fully reproducible finetuning code is available on GitHub

wandb log

See Pythia-1b for model details (paper).

See further details of these models in the paper Attributing Mode Collapse in the Fine-Tuning of Large Language Models.

You can cite these models if they are helpful as follows:

@inproceedings{o2024attributing,
  title={Attributing Mode Collapse in the Fine-Tuning of Large Language Models},
  author={O’Mahony, Laura and Grinsztajn, Leo and Schoelkopf, Hailey and Biderman, Stella},
  booktitle={ICLR 2024, Mathematical and Empirical Understanding of Foundation Models (ME-FoMo) workshop},
  year={2024}
}

hf (pretrained=lomahony/pythia-1b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 0 acc 0.2543 ± 0.0127
none 0 acc_norm 0.2739 ± 0.0130
arc_easy 1 none 0 acc 0.5724 ± 0.0102
none 0 acc_norm 0.4941 ± 0.0103
boolq 2 none 0 acc 0.6199 ± 0.0085
hellaswag 1 none 0 acc 0.3819 ± 0.0048
none 0 acc_norm 0.4736 ± 0.0050
lambada_openai 1 none 0 perplexity 7.1374 ± 0.2014
none 0 acc 0.5626 ± 0.0069
openbookqa 1 none 0 acc 0.2040 ± 0.0180
none 0 acc_norm 0.3140 ± 0.0208
piqa 1 none 0 acc 0.7138 ± 0.0105
none 0 acc_norm 0.6997 ± 0.0107
sciq 1 none 0 acc 0.8400 ± 0.0116
none 0 acc_norm 0.7620 ± 0.0135
wikitext 2 none 0 word_perplexity 16.9719 ± N/A
none 0 byte_perplexity 1.6981 ± N/A
none 0 bits_per_byte 0.7639 ± N/A
winogrande 1 none 0 acc 0.5343 ± 0.0140

hf (pretrained=lomahony/pythia-1b-helpful-sft), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: 16

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge 1 none 5 acc 0.2628 ± 0.0129
none 5 acc_norm 0.2918 ± 0.0133
arc_easy 1 none 5 acc 0.6040 ± 0.0100
none 5 acc_norm 0.5816 ± 0.0101
boolq 2 none 5 acc 0.5963 ± 0.0086
hellaswag 1 none 5 acc 0.3780 ± 0.0048
none 5 acc_norm 0.4719 ± 0.0050
lambada_openai 1 none 5 perplexity 10.2584 ± 0.2936
none 5 acc 0.4832 ± 0.0070
openbookqa 1 none 5 acc 0.1980 ± 0.0178
none 5 acc_norm 0.3220 ± 0.0209
piqa 1 none 5 acc 0.7057 ± 0.0106
none 5 acc_norm 0.7095 ± 0.0106
sciq 1 none 5 acc 0.8980 ± 0.0096
none 5 acc_norm 0.9000 ± 0.0095
wikitext 2 none 5 word_perplexity 16.9719 ± N/A
none 5 byte_perplexity 1.6981 ± N/A
none 5 bits_per_byte 0.7639 ± N/A
winogrande 1 none 5 acc 0.5446 ± 0.0140
Downloads last month
20
Safetensors
Model size
1.01B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train lomahony/pythia-1b-helpful-sft

Collection including lomahony/pythia-1b-helpful-sft