Samantha Qwen2 7B
Trained on 2x4090 using QLoRa and FSDP
Launch Using VLLM
python -m vllm.entrypoints.openai.api_server \
--model macadeliccc/Samantha-Qwen-2-7B \
--chat-template ./examples/template_chatml.jinja \
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
chat_response = client.chat.completions.create(
model="macadeliccc/Samantha-Qwen-2-7B",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a joke."},
]
)
print("Chat response:", chat_response)
Prompt Template
<|im_start|>system
You are a friendly assistant.<|im_end|>
<|im_start|>user
What is the capital of France?<|im_end|>
<|im_start|>assistant
The capital of France is Paris.
Quants
See axolotl config
axolotl version: 0.4.0
base_model: Qwen/Qwen-7B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
datasets:
- path: macadeliccc/opus_samantha
type: sharegpt
field: conversations
conversation: chatml
- path: uncensored-ultrachat.json
type: sharegpt
field: conversations
conversation: chatml
- path: openhermes_200k.json
type: sharegpt
field: conversations
conversation: chatml
- path: opus_instruct.json
type: sharegpt
field: conversations
conversation: chatml
chat_template: chatml
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/lora-out
sequence_len: 2048
sample_packing: false
pad_to_sequence_len:
adapter: qlora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention:
warmup_steps: 250
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
- Downloads last month
- 5,615
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.