whisper-tiny-en-minds14

This model is a fine-tuned version of openai/whisper-tiny on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5680
  • Wer Ortho: 0.2721
  • Wer: 0.2745

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
1.4576 1.79 50 0.9286 0.3128 0.3152
0.3694 3.57 100 0.5188 0.2776 0.2774
0.0466 5.36 150 0.4494 0.2640 0.2692
0.008 7.14 200 0.4855 0.2782 0.2816
0.0026 8.93 250 0.4892 0.2801 0.2845
0.0016 10.71 300 0.5116 0.2745 0.2774
0.0004 12.5 350 0.5383 0.2770 0.2798
0.0002 14.29 400 0.5471 0.2758 0.2774
0.0002 16.07 450 0.5590 0.2714 0.2733
0.0001 17.86 500 0.5680 0.2721 0.2745

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train magnustragardh/whisper-tiny-en-minds14

Evaluation results