ChatGPT Prompt Generator v12
This model is a fine-tuned version of BART-large on a ChatGPT prompts dataset. It achieves the following results on the evaluation set: It achieves the following results on the evaluation set:
- Train Loss: 2.4800
- Validation Loss: 2.7320
- Epoch: 4
Intended uses & limitations
You can use this to generate ChatGPT personas. Simply input a persona like below:
from transformers import BartForConditionalGeneration, BartTokenizer
example_english_phrase = "photographer"
batch = tokenizer(example_english_phrase, return_tensors="pt")
generated_ids = model.generate(batch["input_ids"], max_new_tokens=150)
output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
Training results
Train Loss | Validation Loss | Epoch |
---|---|---|
5.3808 | 3.3133 | 0 |
3.2642 | 3.0104 | 1 |
2.8886 | 2.8600 | 2 |
2.6594 | 2.7949 | 3 |
2.4800 | 2.7320 | 4 |
Framework versions
- Transformers 4.26.1
- TensorFlow 2.11.0
- Datasets 2.10.1
- Tokenizers 0.13.2
- Downloads last month
- 18
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.