bloom-560m-finetuned-sd-prompts

This model is a fine-tuned version of bigscience/bloom-560m on the Gustavosta/Stable-Diffusion-Prompts dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8742

Example of usage

import torch
from transformers import BloomTokenizerFast, BloomForCausalLM

device = 'cuda' if torch.cuda.is_available() else 'cpu'
ckpt = 'mrm8488/bloom-560m-finetuned-sd-prompts' 

tokenizer = BloomTokenizerFast.from_pretrained(ckpt)
model = BloomForCausalLM.from_pretrained(ckpt).to(device)

def generate_prompt(text):
    inputs = tokenizer(text, return_tensors='pt')
    input_ids = inputs.input_ids.to(device)
    attention_mask = inputs.attention_mask.to(device)
    output = model.generate(input_ids, attention_mask=attention_mask, repetition_penalty=1.05, max_length=2048, eos_token_id=tokenizer.eos_token_id)

    return tokenizer.decode(output[0], skip_special_tokens=False)
    
text = "<s>Prompt: pikachu dinning in the eiffel tower"

generate_prompt(text)

# Output: <s>Prompt: pikachu dinning in the eiffel tower, intricate, elegant, highly detailed, digital painting, artstation, concept art, smooth, sharp focus, illustration, art by artgerm and greg rutkowski and alphonse mucha</s>

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 4
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.6743 0.17 100 2.0891
1.8919 0.33 200 1.7191
1.5907 0.5 300 1.4454
1.3865 0.67 400 1.3247
1.2487 0.83 500 1.2150
1.1565 1.0 600 1.1031
0.896 1.17 700 1.0612
0.8389 1.33 800 0.9994
0.8071 1.5 900 0.9530
0.7628 1.67 1000 0.9206
0.7423 1.83 1100 0.8883
0.7155 2.0 1200 0.8742

Framework versions

  • Transformers 4.22.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
56
Safetensors
Model size
559M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mrm8488/bloom-560m-finetuned-sd-prompts

Space using mrm8488/bloom-560m-finetuned-sd-prompts 1