LIMSTRAL π²π
Mistral 7B fine-tuned on LIMA
This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the LIMA dataset for instruction following downstream task.
Training procedure
The model was loaded on 8 bits and fine-tuned on the LIMA dataset using the LoRA PEFT technique with the huggingface/peft
library and trl/sft
for 2 epochs on 1 x A100 (40GB) GPU.
SFT Trainer params:
trainer = SFTTrainer(
model=model,
train_dataset=train_ds,
eval_dataset=test_ds,
peft_config=peft_config,
dataset_text_field="text",
max_seq_length=2048,
tokenizer=tokenizer,
args=training_arguments,
packing=False
)
LoRA config:
config = LoraConfig(
lora_alpha=16,
lora_dropout=0.1,
r=64,
bias="none",
task_type="CAUSAL_LM",
target_modules = ['q_proj', 'k_proj', 'down_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj']
)
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 66
- gradient_accumulation_steps: 64
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.03
- num_epochs: 2
- mixed_precision_training: Native AMP
Training results
Step | Training Loss | Validation Loss |
---|---|---|
5 | 1.802800 | 1.848371 |
10 | 1.605800 | 1.803416 |
15 | 1.844800 | 1.762276 |
20 | 1.752600 | 1.754042 |
25 | 1.512400 | 1.750550 |
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
repo_id = "mrm8488/limstral-7B-v0.1"
model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)
instruction = "[INST] Write an email to say goodbye to me boss [\INST]"
res = gen(instruction, max_new_tokens=512, temperature=0.3, top_p=0.75, top_k=40, repetition_penalty=1.2)
print(res[0]['generated_text'])
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 605
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.