limstral logo

Mistral 7B fine-tuned on H4/No Robots instructions

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the HuggingFaceH4/no_robots dataset for instruction following downstream task.

Training procedure

The model was loaded on 8 bits and fine-tuned on the LIMA dataset using the LoRA PEFT technique with the huggingface/peft library and trl/sft for one epoch on 1 x A100 (40GB) GPU.

SFT Trainer params:

trainer = SFTTrainer(
    model=model,
    train_dataset=train_ds,
    eval_dataset=test_ds,
    peft_config=peft_config,
    dataset_text_field="text",
    max_seq_length=2048,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=False
)

LoRA config:

config = LoraConfig(
        lora_alpha=16,
        lora_dropout=0.1,
        r=64,
        bias="none",
        task_type="CAUSAL_LM",
        target_modules = ['q_proj', 'k_proj', 'down_proj', 'v_proj', 'o_proj', 'gate_proj', 'up_proj']
    )

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 8
  • seed: 66
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 2
  • mixed_precision_training: Native AMP

Training results

Step Training Loss Validation Loss
10 1.796200 1.774305
20 1.769700 1.679720
30 1.626800 1.667754
40 1.663400 1.665188
50 1.565700 1.659000
60 1.660300 1.658270

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

repo_id = "mrm8488/mistral-7b-ft-h4-no_robots_instructions"

model = AutoModelForCausalLM.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(repo_id)

gen = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0)

instruction = "[INST] Write an email to say goodbye to me boss [\INST]"
res = gen(instruction, max_new_tokens=512, temperature=0.3, top_p=0.75, top_k=40, repetition_penalty=1.2, eos_token_id=2)
print(res[0]['generated_text'])

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.14.1

Citation

@misc {manuel_romero_2023,
    author       = { {Manuel Romero} },
    title        = { mistral-7b-ft-h4-no_robots_instructions (Revision 785446d) },
    year         = 2023,
    url          = { https://huggingface.co/mrm8488/mistral-7b-ft-h4-no_robots_instructions },
    doi          = { 10.57967/hf/1426 },
    publisher    = { Hugging Face }
}
Downloads last month
36
Safetensors
Model size
7.24B params
Tensor type
BF16
ยท
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mrm8488/mistral-7b-ft-h4-no_robots_instructions

Finetuned
(811)
this model

Dataset used to train mrm8488/mistral-7b-ft-h4-no_robots_instructions

Space using mrm8488/mistral-7b-ft-h4-no_robots_instructions 1