DUSt3R: Geometric 3D Vision Made Easy

@inproceedings{dust3r_cvpr24,
      title={DUSt3R: Geometric 3D Vision Made Easy}, 
      author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
      booktitle = {CVPR},
      year = {2024}
}

@misc{dust3r_arxiv23,
      title={DUSt3R: Geometric 3D Vision Made Easy}, 
      author={Shuzhe Wang and Vincent Leroy and Yohann Cabon and Boris Chidlovskii and Jerome Revaud},
      year={2023},
      eprint={2312.14132},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2312.14132}, 
}

License

The code is distributed under the CC BY-NC-SA 4.0 License. See LICENSE for more information. For the checkpoints, make sure to agree to the license of all the public training datasets and base checkpoints we used, in addition to CC-BY-NC-SA 4.0. See section: Our Hyperparameters for details.

Model info

Gihub page: https://github.com/naver/dust3r/ Project page: https://dust3r.europe.naverlabs.com/

Modelname Training resolutions Head Encoder Decoder
DUSt3R_ViTLarge_BaseDecoder_224_linear 224x224 Linear ViT-L ViT-B

How to use

First, install dust3r. To load the model:

from dust3r.model import AsymmetricCroCo3DStereo
import torch

model = AsymmetricCroCo3DStereo.from_pretrained("naver/DUSt3R_ViTLarge_BaseDecoder_224_linear")

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
Downloads last month
1,298
Safetensors
Model size
532M params
Tensor type
F32
·
Inference API
Inference API (serverless) does not yet support dust3r models for this pipeline type.

Model tree for naver/DUSt3R_ViTLarge_BaseDecoder_224_linear

Finetunes
1 model

Space using naver/DUSt3R_ViTLarge_BaseDecoder_224_linear 1

Collection including naver/DUSt3R_ViTLarge_BaseDecoder_224_linear