Bitsandbytes quantization of https://huggingface.co/ibm-granite/granite-3b-code-instruct-2k.

See https://huggingface.co/blog/4bit-transformers-bitsandbytes for instructions.

from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import BitsAndBytesConfig
import torch

# Define the 4-bit configuration
nf4_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)

# Load the pre-trained model with the 4-bit quantization configuration
model = AutoModelForCausalLM.from_pretrained("ibm-granite/granite-3b-code-instruct-2k", quantization_config=nf4_config)

# Load the tokenizer associated with the model
tokenizer = AutoTokenizer.from_pretrained("ibm-granite/granite-3b-code-instruct-2k")

# Push the model and tokenizer to the Hugging Face hub
model.push_to_hub("onekq-ai/granite-3b-code-instruct-2k-bnb-4bit", use_auth_token=True)
tokenizer.push_to_hub("onekq-ai/granite-3b-code-instruct-2k-bnb-4bit", use_auth_token=True)
Downloads last month
4
Safetensors
Model size
1.86B params
Tensor type
F32
·
FP16
·
U8
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for onekq-ai/granite-3b-code-instruct-2k-bnb-4bit

Collection including onekq-ai/granite-3b-code-instruct-2k-bnb-4bit