Hugging Face H4

Enterprise
company
Activity Feed

AI & ML interests

Aligning LLMs to be helpful, honest, harmless, and huggy (H4)

Recent Activity

HuggingFaceH4's activity

yjernite 
posted an update 2 days ago
merve 
posted an update 2 days ago
view post
Post
3327
there's a new multimodal retrieval model in town 🤠
LlamaIndex released vdr-2b-multi-v1
> uses 70% less image tokens, yet outperforming other dse-qwen2 based models
> 3x faster inference with less VRAM 💨
> shrinkable with matryoshka 🪆
> can do cross-lingual retrieval!
Collection: llamaindex/visual-document-retrieval-678151d19d2758f78ce910e1 (with models and datasets)
Demo: llamaindex/multimodal_vdr_demo
Learn more from their blog post here https://huggingface.co/blog/vdr-2b-multilingual 📖
merve 
posted an update 5 days ago
view post
Post
3425
What a beginning to this year in open ML 🤠
Let's unwrap! merve/jan-10-releases-677fe34177759de0edfc9714

Multimodal 🖼️
> ByteDance released SA2VA: a family of vision LMs that can take image, video, text and visual prompts
> moondream2 is out with new capabilities like outputting structured data and gaze detection!
> Dataset: Alibaba DAMO lab released multimodal textbook — 22k hours worth of samples from instruction videos 🤯
> Dataset: SciCap captioning on scientific documents benchmark dataset is released along with the challenge!

LLMs 💬
> Microsoft released Phi-4, sota open-source 14B language model 🔥
> Dolphin is back with Dolphin 3.0 Llama 3.1 8B 🐬🐬
> Prime-RL released Eurus-2-7B-PRIME a new language model trained using PRIME alignment
> SmallThinker-3B is a new small reasoning LM based on Owen2.5-3B-Instruct 💭
> Dataset: QWQ-LONGCOT-500K is the dataset used to train SmallThinker, generated using QwQ-32B-preview 📕
> Dataset: @cfahlgren1 released React Code Instructions: a dataset of code instruction-code pairs 📕
> Dataset: Qwen team is on the roll, they just released CodeElo, a dataset of code preferences 👩🏻‍💻

Embeddings 🔖
> @MoritzLaurer released zero-shot version of ModernBERT large 👏
> KaLM is a new family of performant multilingual embedding models with MIT license built using Qwen2-0.5B

Image/Video Generation ⏯️
> NVIDIA released Cosmos, a new family of diffusion/autoregressive World Foundation Models generating worlds from images, videos and texts 🔥
> Adobe released TransPixar: a new text-to-video model that can generate assets with transparent backgrounds (a first!)
> Dataset: fal released cosmos-openvid-1m Cosmos-tokenized OpenVid-1M with samples from OpenVid-1M

Others
> Prior Labs released TabPFNv2, the best tabular transformer is out for classification and regression
> Metagene-1 is a new RNA language model that can be used for pathogen detection, zero-shot embedding and genome understanding
merve 
posted an update 6 days ago
view post
Post
1719
ByteDance just dropped SA2VA: a new family of vision LMs combining Qwen2VL/InternVL and SAM2 with MIT license 💗 ByteDance/sa2va-model-zoo-677e3084d71b5f108d00e093

> The models are capable of tasks involving vision-language understanding and visual referrals (referring segmentation) both for images and videos ⏯️

> The models come in 1B, 4B and 8B and are based on InternVL2.5 for base architecture and Qwen2, Qwen2.5 and InternLM2 for language model part (depending on the checkpoint)

> The model is very interesting, it has different encoders for different modalities each (visual prompt, text prompt, image and video) then it concatenates these to feed into LLM 💬

the output segmentation tokens are passed to SAM2, to sort of match text (captions or semantic classes) to masks ⤵️

> Their annotation pipeline is also interesting, they seems to use two open large vision LMs to refine the annotations, and have different levels of descriptions to provide consistency.
  • 1 reply
·
albertvillanova 
posted an update 8 days ago
lewtun 
posted an update 10 days ago
view post
Post
3222
I was initially pretty sceptical about Meta's Coconut paper [1] because the largest perf gains were reported on toy linguistic problems. However, these results on machine translation are pretty impressive!

https://x.com/casper_hansen_/status/1875872309996855343

Together with the recent PRIME method [2] for scaling RL, reasoning for open models is looking pretty exciting for 2025!

[1] Training Large Language Models to Reason in a Continuous Latent Space (2412.06769)
[2] https://huggingface.co/blog/ganqu/prime