FineWeb2 is a massive multilingual dataset for pre-training language models. Like any web-scale dataset, it contains low-quality content. How can we improve it?
Over the past months, an amazing community of 400+ annotators has been labelling content quality (using Argilla) across 23 languages through the FineWeb-C initiative.
Today, I'm happy to share the first classifier trained on this data.
🔍 What we've built:
- A lightweight classifier that efficiently removes low-quality content - 90%+ precision demonstrated on Danish & Swedish - Can process the 43M+ documents in Danish FineWeb2 with minimal compute
🌍 Why this matters: The approach can be reproduced for any of the 23 languages in FineWeb-C (data-is-better-together/fineweb-c). We can improve training data quality at scale without massive compute resources by starting with community annotations and training small, efficient classifiers.
This week a few more languages have got 1,000 annotations for the educational quality of data from HuggingFaceFW/fineweb-2.
Why should you care?
The quality of pre-training data can have a big impact on the performance of downstream language models trained on that data (HuggingFaceFW/blogpost-fineweb-v1).
Being able to filter by educational quality is on way of improving the quality of the data you use for training an LLM. Very importantly this approach can also reduce the amount of data needed for pertaining.
Why not use an LLM?
LLMs can be used to annotate educational quality for a subset of data. This data can then be used to train a smaller encoder only model to label the full dataset. However, this may not work well for languages outside of english. This is where fineweb-c (community) comes in.
The community is annotating the educational quality of fineweb2 data. Currently 114 languages have some annotations. These annotations will enable a number of things:
- Evaluate whether an LLM can label the educational quality for texts in that language well - Directly be used for training quality classifiers - Help discover other rules and huerisitcs for refining fineweb2 further for different languages.
* 4 new video models * Multiple image models, including SANA & Flux Control * New quantizers -> GGUF & TorchAO * New training scripts Enjoy this holiday-special Diffusers release 🤗 Notes: https://github.com/huggingface/diffusers/releases/tag/v0.32.0
In the past seven days, the Diffusers team has shipped:
1. Two new video models 2. One new image model 3. Two new quantization backends 4. Three new fine-tuning scripts 5. Multiple fixes and library QoL improvements
Coffee on me if someone can guess 1 - 4 correctly.
Introducing the Synthetic Data Generator, a user-friendly application that takes a no-code approach to creating custom datasets with Large Language Models (LLMs). The best part: A simple step-by-step process, making dataset creation a non-technical breeze, allowing anyone to create datasets and models in minutes and without any code.
How do your annotations for FineWeb2 compare to your teammates'?
I started contributing some annotations to the FineWeb2 collaborative annotation sprint and I wanted to know if my labelling trends were similar to those of my teammates.
I did some analysis and I wasn't surprised to see that I'm being a bit harsher on my evaluations than my mates 😂
Do you want to see how your annotations compare to others? 👉 Go to this Gradio space: nataliaElv/fineweb2_compare_my_annotations ✍️ Enter the dataset that you've contributed to and your Hugging Face username.
Quick update from week 1 of smol course. The community is taking the driving seat and using the material for their own projects. If you want to do the same, join in!
- we have ongoing translation projects in Korean, Vietnamese, Portuguese, and Spanish - 3 chapters are ready for students. On topics like, instruction tuning, preference alignment, and parameter efficient fine tuning - 3 chapters are in progress on evaluation, vision language models, and synthetic data. - around 780 people have forked the repo to use it for learning, teaching, sharing.
⏭️ Next step is to support people that want to use the course for teaching, content creation, internal knowledge sharing, or anything. If you're into this. Drop an issue or PR
Open Preference Dataset for Text-to-Image Generation by the 🤗 Community
Open Image Preferences is an Apache 2.0 licensed dataset for text-to-image generation. This dataset contains 10K text-to-image preference pairs across common image generation categories, while using different model families and varying prompt complexities.