Hugging Face Machine Learning Optimization

company
Activity Feed

AI & ML interests

None defined yet.

hf-ml-opt's activity

jeffboudier 
posted an update 8 days ago
view post
Post
504
NVIDIA just announced the Cosmos World Foundation Models, available on the Hub: nvidia/cosmos-6751e884dc10e013a0a0d8e6

Cosmos is a family of pre-trained models purpose-built for generating physics-aware videos and world states to advance physical AI development.
The release includes Tokenizers nvidia/cosmos-tokenizer-672b93023add81b66a8ff8e6

Learn more in this great community article by @mingyuliutw and @PranjaliJoshi https://huggingface.co/blog/mingyuliutw/nvidia-cosmos
  • 1 reply
·
regisss 
posted an update 28 days ago
jeffboudier 
posted an update about 2 months ago
regisss 
posted an update 3 months ago
view post
Post
1398
Interested in performing inference with an ONNX model?⚡️

The Optimum docs about model inference with ONNX Runtime is now much clearer and simpler!

You want to deploy your favorite model on the hub but you don't know how to export it to the ONNX format? You can do it in one line of code as follows:
from optimum.onnxruntime import ORTModelForSequenceClassification

# Load the model from the hub and export it to the ONNX format
model_id = "distilbert-base-uncased-finetuned-sst-2-english"
model = ORTModelForSequenceClassification.from_pretrained(model_id, export=True)

Check out the whole guide 👉 https://huggingface.co/docs/optimum/onnxruntime/usage_guides/models
jeffboudier 
posted an update 3 months ago
jeffboudier 
posted an update 4 months ago
view post
Post
456
Inference Endpoints got a bunch of cool updates yesterday, this is my top 3
jeffboudier 
posted an update 4 months ago
view post
Post
4039
Pro Tip - if you're a Firefox user, you can set up Hugging Chat as integrated AI Assistant, with contextual links to summarize or simplify any text - handy!

In this short video I show how to set it up
·
IlyasMoutawwakil 
posted an update 7 months ago
view post
Post
4011
Last week, Intel's new Xeon CPUs, Sapphire Rapids (SPR), landed on Inference Endpoints and I think they got the potential to reduce the cost of your RAG pipelines 💸

Why ? Because they come with Intel® AMX support, which is a set of instructions that support and accelerate BF16 and INT8 matrix multiplications on CPU ⚡

I went ahead and built a Space to showcase how to efficiently deploy embedding models on SPR for both Retrieving and Ranking documents, with Haystack compatible components: https://huggingface.co/spaces/optimum-intel/haystack-e2e

Here's how it works:

- Document Store: A FAISS document store containing the seven-wonders dataset, embedded, indexed and stored on the Space's persistent storage to avoid unnecessary re-computation of embeddings.

- Retriever: It embeds the query at runtime and retrieves from the dataset N documents that are most semantically similar to the query's embedding.
We use the small variant of the BGE family here because we want a model that's fast to run on the entire dataset and has a small embedding space for fast similarity search. Specifically we use an INT8 quantized bge-small-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance.

- Ranker: It re-embeds the retrieved documents at runtime and re-ranks them based on semantic similarity to the query's embedding. We use the large variant of the BGE family here because it's optimized for accuracy allowing us to filter the most relevant k documents that we'll use in the LLM prompt. Specifically we use an INT8 quantized bge-large-en-v1.5, deployed on an Intel Sapphire Rapids CPU instance.

Space: https://huggingface.co/spaces/optimum-intel/haystack-e2e
Retriever IE: optimum-intel/fastrag-retriever
Ranker IE: optimum-intel/fastrag-ranker
jeffboudier 
posted an update 9 months ago
jeffboudier 
posted an update 10 months ago
philschmid 
posted an update 10 months ago
view post
Post
7061
New state-of-the-art open LLM! 🚀 Databricks just released DBRX, a 132B MoE trained on 12T tokens. Claiming to surpass OpenAI GPT-3.5 and is competitive with Google Gemini 1.0 Pro. 🤯

TL;DR
🧮 132B MoE with 16 experts with 4 active in generation
🪟 32 000 context window
📈 Outperforms open LLMs on common benchmarks, including MMLU
🚀 Up to 2x faster inference than Llama 2 70B
💻 Trained on 12T tokens
🔡 Uses the GPT-4 tokenizer
📜 Custom License, commercially useable

Collection: databricks/dbrx-6601c0852a0cdd3c59f71962
Demo: https://huggingface.co/spaces/databricks/dbrx-instruct

Kudos to the Team at Databricks and MosaicML for this strong release in the open community! 🤗
·
philschmid 
posted an update 12 months ago
view post
Post
What's the best way to fine-tune open LLMs in 2024? Look no further! 👀 I am excited to share “How to Fine-Tune LLMs in 2024 with Hugging Face” using the latest research techniques, including Flash Attention, Q-LoRA, OpenAI dataset formats (messages), ChatML, Packing, all built with Hugging Face TRL. 🚀

It is created for consumer-size GPUs (24GB) covering the full end-to-end lifecycle with:
💡Define and understand use cases for fine-tuning
🧑🏻‍💻 Setup of the development environment
🧮 Create and prepare dataset (OpenAI format)
🏋️‍♀️ Fine-tune LLM using TRL and the SFTTrainer
🥇 Test and evaluate the LLM
🚀 Deploy for production with TGI

👉  https://www.philschmid.de/fine-tune-llms-in-2024-with-trl

Coming soon: Advanced Guides for multi-GPU/multi-Node full fine-tuning and alignment using DPO & KTO. 🔜
·