philschmid/vit-base-patch16-224-in21k-euroSat
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0218
- Train Accuracy: 0.9990
- Train Top-3-accuracy: 1.0000
- Validation Loss: 0.0440
- Validation Accuracy: 0.9906
- Validation Top-3-accuracy: 1.0
- Epoch: 5
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'inner_optimizer': {'class_name': 'AdamWeightDecay', 'config': {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 3e-05, 'decay_steps': 3585, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}}, 'dynamic': True, 'initial_scale': 32768.0, 'dynamic_growth_steps': 2000}
- training_precision: mixed_float16
Training results
Train Loss | Train Accuracy | Train Top-3-accuracy | Validation Loss | Validation Accuracy | Validation Top-3-accuracy | Epoch |
---|---|---|---|---|---|---|
0.4692 | 0.9471 | 0.9878 | 0.1455 | 0.9861 | 0.9998 | 1 |
0.0998 | 0.9888 | 0.9996 | 0.0821 | 0.9864 | 0.9995 | 2 |
0.0517 | 0.9939 | 0.9999 | 0.0617 | 0.9871 | 1.0 | 3 |
0.0309 | 0.9971 | 0.9999 | 0.0524 | 0.9878 | 0.9998 | 4 |
0.0218 | 0.9990 | 1.0000 | 0.0440 | 0.9906 | 1.0 | 5 |
Framework versions
- Transformers 4.15.0
- TensorFlow 2.7.0
- Datasets 1.17.0
- Tokenizers 0.10.3
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- accuracy on eurosatself-reported0.991
- top-3-accuracy on eurosatself-reported1.000