SD3.5-Merged

This repository contains the merged version of Stable Diffusion 3.5, combining the best features from both the Large and Turbo variants.

Merge & Upload

To access the Stable Diffusion 3.5 models, one needs to fill the forms in the corresponding repositories, and then huggingface_cli login to let your system know who you are and whether you have access to the models!

from diffusers import SD3Transformer2DModel
from huggingface_hub import snapshot_download
from accelerate import init_empty_weights
from diffusers.models.model_loading_utils import load_model_dict_into_meta
import safetensors.torch
from huggingface_hub import upload_folder
import glob
import torch

large_model_id = "stabilityai/stable-diffusion-3.5-large"
turbo_model_id = "stabilityai/stable-diffusion-3.5-large-turbo"

with init_empty_weights():
    config = SD3Transformer2DModel.load_config(large_model_id, subfolder="transformer")
    model = SD3Transformer2DModel.from_config(config)

large_ckpt = snapshot_download(repo_id=large_model_id, allow_patterns="transformer/*")
turbo_ckpt = snapshot_download(repo_id=turbo_model_id, allow_patterns="transformer/*")

large_shards = sorted(glob.glob(f"{large_ckpt}/transformer/*.safetensors"))
turbo_shards = sorted(glob.glob(f"{turbo_ckpt}/transformer/*.safetensors"))

merged_state_dict = {}
guidance_state_dict = {}

for i in range(len((large_shards))):
    state_dict_large_temp = safetensors.torch.load_file(large_shards[i])
    state_dict_turbo_temp = safetensors.torch.load_file(turbo_shards[i])

    keys = list(state_dict_large_temp.keys())
    for k in keys:
        if "guidance" not in k:
            merged_state_dict[k] = (state_dict_large_temp.pop(k) + state_dict_turbo_temp.pop(k)) / 2
        else:
            guidance_state_dict[k] = state_dict_large_temp.pop(k)

    if len(state_dict_large_temp) > 0:
        raise ValueError(f"There should not be any residue but got: {list(state_dict_large_temp.keys())}.")
    if len(state_dict_turbo_temp) > 0:
        raise ValueError(f"There should not be any residue but got: {list(state_dict_turbo_temp.keys())}.")

merged_state_dict.update(guidance_state_dict)
load_model_dict_into_meta(model, merged_state_dict)

model.to(torch.bfloat16).save_pretrained("transformer")

upload_folder(
    repo_id="prithivMLmods/Sd3.5-Merged",
    folder_path="transformer",
    path_in_repo="transformer",
)

Inference

from diffusers import StableDiffusion3Pipeline
import torch

pipeline = StableDiffusion3Pipeline.from_pretrained(
    "prithivMLmods/Sd3.5-Merged", torch_dtype=torch.bfloat16
).to("cuda")

prompt = "a tiny astronaut hatching from an egg on the moon"
image = pipeline(
    prompt=prompt,
    guidance_scale=1.0,
    num_inference_steps=6,  # Run faster ⚡️
    generator=torch.manual_seed(0),
).images[0]
image.save("sd-3.5-merged.png")
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for prithivMLmods/Sd3.5-Merged