vit-base-beans

This model is a fine-tuned version of timm/resnet101.a1_in1k on the beans dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4913
  • Accuracy: 0.8571

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 1337
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.07 1.0 130 1.0683 0.4135
1.0523 2.0 260 1.0356 0.6241
1.0439 3.0 390 1.0045 0.6617
1.0056 4.0 520 0.9671 0.7293
0.9853 5.0 650 0.9245 0.7895
0.9581 6.0 780 0.8744 0.7820
0.9044 7.0 910 0.8172 0.7820
0.869 8.0 1040 0.7737 0.8271
0.8804 9.0 1170 0.7098 0.8271
0.7757 10.0 1300 0.6705 0.8120
0.7694 11.0 1430 0.6382 0.8571
0.7966 12.0 1560 0.6088 0.7895
0.7425 13.0 1690 0.5724 0.8496
0.7698 14.0 1820 0.5665 0.8195
0.6632 15.0 1950 0.5308 0.8571
0.6162 16.0 2080 0.5262 0.8346
0.6128 17.0 2210 0.5081 0.8421
0.685 18.0 2340 0.4913 0.8571
0.6614 19.0 2470 0.4937 0.8496
0.6934 20.0 2600 0.5027 0.8571

Framework versions

  • Transformers 4.47.0.dev0
  • Pytorch 2.5.0+cu118
  • Datasets 2.21.0
  • Tokenizers 0.20.0
Downloads last month
25
Safetensors
Model size
42.6M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for qubvel-hf/vit-base-beans

Finetuned
(1)
this model