layoutlmv2-base-uncased_finetuned_docvqa

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 4.6788

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss
5.3193 0.22 50 4.5453
4.5115 0.44 100 4.1632
4.1316 0.66 150 3.8496
3.7911 0.88 200 3.7418
3.5175 1.11 250 3.9454
3.2171 1.33 300 3.0430
3.0377 1.55 350 3.1317
3.1081 1.77 400 2.8709
2.6219 1.99 450 2.9745
2.2922 2.21 500 3.0184
2.2245 2.43 550 2.6649
2.0918 2.65 600 2.3156
2.0339 2.88 650 2.4970
1.7088 3.1 700 2.2817
1.4584 3.32 750 2.3237
1.4296 3.54 800 2.1868
1.4413 3.76 850 2.2775
1.4055 3.98 900 2.6660
1.0251 4.2 950 2.6155
1.1251 4.42 1000 2.9841
1.059 4.65 1050 2.7376
1.0179 4.87 1100 3.7345
1.1128 5.09 1150 2.6704
0.8461 5.31 1200 3.0422
0.86 5.53 1250 3.2093
0.9124 5.75 1300 3.2782
0.8687 5.97 1350 3.1477
0.7039 6.19 1400 2.6896
0.8908 6.42 1450 3.0843
0.7408 6.64 1500 2.9585
0.6026 6.86 1550 3.3629
0.4852 7.08 1600 3.1505
0.5496 7.3 1650 3.6285
0.5578 7.52 1700 3.3481
0.5897 7.74 1750 3.3201
0.4487 7.96 1800 3.1462
0.2182 8.19 1850 3.7251
0.3524 8.41 1900 3.5870
0.4516 8.63 1950 3.6300
0.5658 8.85 2000 3.1085
0.4877 9.07 2050 3.5353
0.2226 9.29 2100 3.6744
0.2544 9.51 2150 4.1244
0.6194 9.73 2200 3.4775
0.3759 9.96 2250 3.7031
0.2718 10.18 2300 3.6076
0.1322 10.4 2350 3.6885
0.2596 10.62 2400 3.9328
0.1675 10.84 2450 4.1439
0.158 11.06 2500 4.4306
0.1462 11.28 2550 4.3744
0.2187 11.5 2600 4.4111
0.264 11.73 2650 3.9780
0.1997 11.95 2700 4.2383
0.1369 12.17 2750 4.1329
0.1204 12.39 2800 4.2738
0.2001 12.61 2850 4.0106
0.2132 12.83 2900 4.1816
0.1472 13.05 2950 4.4600
0.0603 13.27 3000 4.0050
0.0911 13.5 3050 4.1838
0.1016 13.72 3100 4.4429
0.0887 13.94 3150 4.1510
0.0495 14.16 3200 4.2938
0.0677 14.38 3250 4.6133
0.1263 14.6 3300 4.4634
0.1953 14.82 3350 3.9348
0.0212 15.04 3400 4.1726
0.0082 15.27 3450 4.3512
0.0432 15.49 3500 4.2992
0.0975 15.71 3550 4.2274
0.0933 15.93 3600 4.4028
0.024 16.15 3650 4.4662
0.0964 16.37 3700 4.3964
0.0487 16.59 3750 4.4827
0.0147 16.81 3800 4.5577
0.0951 17.04 3850 4.5640
0.0508 17.26 3900 4.4473
0.1163 17.48 3950 4.4565
0.0151 17.7 4000 4.5511
0.0569 17.92 4050 4.5298
0.0639 18.14 4100 4.5417
0.0155 18.36 4150 4.6398
0.0107 18.58 4200 4.7664
0.0044 18.81 4250 4.8119
0.0906 19.03 4300 4.7168
0.0533 19.25 4350 4.7032
0.0496 19.47 4400 4.6918
0.0938 19.69 4450 4.6824
0.0483 19.91 4500 4.6788

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1
  • Datasets 2.17.1
  • Tokenizers 0.15.2
Downloads last month
3
Safetensors
Model size
200M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for rogdevil/layoutlmv2-base-uncased_finetuned_docvqa

Finetuned
(67)
this model