controlnet_rough

Generate a roughness map from a photograph or basecolor (albedo) map.

Usage

import argparse

from PIL import Image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from diffusers.utils import load_image
import torch

parser = argparse.ArgumentParser(description="Args for parser")
parser.add_argument("--seed", type=int, default=1, help="Seed for inference")
args = parser.parse_args()

base_model_path = "stabilityai/stable-diffusion-2-1-base"
controlnet_path = "sidnarsipur/controlnet_rough"

controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline.from_pretrained(
    base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)

pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_xformers_memory_efficient_attention()
pipe.enable_model_cpu_offload()

control_image = load_image("inference/basecolor.png") #Change based on your image path
prompt = "Roughness Map" #Don't change!

if control_image.size[0] > 2048 or control_image.size[1] > 2048: #Optional
    control_image = control_image.resize((control_image.size[0] // 2, control_image.size[1] // 2))

generator = torch.manual_seed(args.seed)

image = pipe(
    prompt, num_inference_steps=50, generator=generator, image=control_image
).images[0]
image.save("inference/normal.png")
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for sidnarsipur/controlnet_rough

Adapter
(599)
this model