Inspired by sentosa/ZNV-Embedding: A prompt-engineering way to aggregate 'title' info into embeddings.(modifications have been implemented) To do:

  1. Re-train the dense layers.
  2. Re-define a more effective concatenation.
  3. Adopt AnglE to finetune the tiny-llama.
  4. Loss function.

To run TE_Embedding model:

import os
from transformers import (AutoConfig,
    AutoTokenizer,AutoModelForCausalLM
)
import torch
import torch.nn.functional as F
import numpy as np


class TEmbeddingModel(torch.nn.Module):
    def __init__(self, model_name_or_path):
        super(TEmbeddingModel, self).__init__()
        self.prompt_prefix = "Reading the below text and answer questions:\n"  
        self.prompt_suffixes = ["\n1.One word to summarize the above text:",
                                "\n2.The deeper meaning of the above text:"]
        self.hidden_size = 2048 #depends on the model
        self.model_name_or_path = model_name_or_path
        self.linear_suffixes = torch.nn.ModuleList(
            [torch.nn.Linear(self.hidden_size, self.hidden_size//len(self.prompt_suffixes))
             for _ in range(len(self.prompt_suffixes))])
        self.tokenizer, self.llama = self.load_llama()
        # self.device = torch.device('cuda')
        self.tanh = torch.nn.Tanh()
        self.suffixes_ids = []
        self.suffixes_ids_len = []
        self.suffixes_len = 0
        for suffix in self.prompt_suffixes:
            ids = self.tokenizer(suffix, return_tensors="pt")["input_ids"].tolist()[0]
            self.suffixes_ids += ids 
            self.suffixes_ids_len.append(len(ids)) 
            self.suffixes_len += len(ids)

        self.suffixes_ones = torch.ones(self.suffixes_len)
        self.suffixes_ids = torch.tensor(self.suffixes_ids)

        linear_file = ".//TE//linears"
        load_layers = torch.load(linear_file)
        model_state = self.state_dict()
        model_state.update(load_layers)
        self.load_state_dict(model_state, strict=False)

    def load_llama(self):
        llm_path = os.path.join(self.model_name_or_path)
        config = AutoConfig.from_pretrained(llm_path)
        tokenizer = AutoTokenizer.from_pretrained(self.model_name_or_path)
        tokenizer.padding_side = "left"
        model = AutoModelForCausalLM.from_pretrained(
            llm_path,
            config=config,
            low_cpu_mem_usage=True,
            device_map="auto",
        )
        model.config.use_cache = False

        if tokenizer.pad_token is None:
            tokenizer.add_special_tokens({'pad_token': '[PAD]'})
            model.resize_token_embeddings(len(tokenizer))
        return tokenizer, model

    def forward(self, sentences):
        prompts_embeddings = []
        sentences = [self.prompt_prefix + s for s in sentences] #concat前缀
        inputs = self.tokenizer(sentences, max_length=256, padding=True, truncation=True,
                                return_tensors='pt')
        attention_mask = inputs["attention_mask"]
        input_ids = inputs["input_ids"]
        batch_size = len(sentences)
        suffixes_ones = self.suffixes_ones.unsqueeze(0) 
        suffixes_ones = suffixes_ones.repeat(batch_size, 1)
        device = next(self.parameters()).device
        attention_mask = torch.cat([attention_mask, suffixes_ones], dim=-1).to(device)

        suffixes_ids = self.suffixes_ids.unsqueeze(0)
        suffixes_ids = suffixes_ids.repeat(batch_size, 1)
        input_ids = torch.cat([input_ids, suffixes_ids], dim=-1) #to("cuda")
        last_hidden_state = self.llama.base_model(attention_mask=attention_mask, input_ids=input_ids).last_hidden_state.to(device)
        index = -1
        for i in range(len(self.suffixes_ids_len)):
            embedding = last_hidden_state[:, index, :]
            embedding = self.linear_suffixes[i](embedding)
            prompts_embeddings.append(embedding)
            index -= self.suffixes_ids_len[-i-1]

        output_embedding = torch.cat(prompts_embeddings, dim=-1)
        output_embedding = self.tanh(output_embedding)
        output_embedding = F.normalize(output_embedding, p=2, dim=1)
        return output_embedding

    def encode(self, sentences, batch_size=10, **kwargs):
        size = len(sentences)
        embeddings = None
        handled = 0
        while handled < size:
            tokens = sentences[handled:handled + batch_size]
            output_embeddings = self.forward(tokens)
            result = output_embeddings.detach().cpu().numpy()
            handled += result.shape[0] # <=10
            if embeddings is not None:
                embeddings = np.concatenate((embeddings, result), axis=0)
            else:
                embeddings = result
        return embeddings
    
if __name__ == "__main__":
    # TE_model = TEmbeddingModel("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
    TE_model = TEmbeddingModel("technicolor/TE_Tinyllama")
    TE_model.eval()
    with torch.no_grad():
        output = TE_model(["Hello", "Nice to meet you"])
        cos_sim = F.cosine_similarity(output[0],output[1],dim=0)
        print(cos_sim)
Downloads last month
25
Safetensors
Model size
1.1B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.