t5-base-TEDxJP-1body-2context

This model is a fine-tuned version of sonoisa/t5-base-japanese on the te_dx_jp dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4968
  • Wer: 0.1969
  • Mer: 0.1895
  • Wil: 0.2801
  • Wip: 0.7199
  • Hits: 55902
  • Substitutions: 6899
  • Deletions: 3570
  • Insertions: 2599
  • Cer: 0.1727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Wer Mer Wil Wip Hits Substitutions Deletions Insertions Cer
0.7136 1.0 746 0.5716 0.2512 0.2345 0.3279 0.6721 54430 7249 4692 4731 0.2344
0.6267 2.0 1492 0.5152 0.2088 0.2005 0.2917 0.7083 55245 6949 4177 2732 0.2009
0.5416 3.0 2238 0.4969 0.2025 0.1948 0.2851 0.7149 55575 6871 3925 2646 0.1802
0.5223 4.0 2984 0.4915 0.1989 0.1917 0.2816 0.7184 55652 6826 3893 2481 0.1754
0.4985 5.0 3730 0.4929 0.1991 0.1916 0.2814 0.7186 55759 6828 3784 2603 0.1753
0.4675 6.0 4476 0.4910 0.1969 0.1897 0.2799 0.7201 55834 6859 3678 2534 0.1756
0.445 7.0 5222 0.4940 0.1955 0.1884 0.2782 0.7218 55881 6821 3669 2485 0.1712
0.4404 8.0 5968 0.4932 0.1979 0.1903 0.2801 0.7199 55881 6828 3662 2643 0.1742
0.4525 9.0 6714 0.4951 0.1968 0.1893 0.2799 0.7201 55939 6897 3535 2632 0.1740
0.4077 10.0 7460 0.4968 0.1969 0.1895 0.2801 0.7199 55902 6899 3570 2599 0.1727

Framework versions

  • Transformers 4.12.5
  • Pytorch 1.10.0+cu102
  • Datasets 1.15.1
  • Tokenizers 0.10.3
Downloads last month
5
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.