Chinese RoBERTa-Base Model for NER

Model description

The model is used for named entity recognition. It is fine-tuned by UER-py, which is introduced in this paper. Besides, the model could also be fine-tuned by TencentPretrain introduced in this paper, which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.

You can download the model either from the UER-py Modelzoo page, or via HuggingFace from the link roberta-base-finetuned-cluener2020-chinese.

How to use

You can use this model directly with a pipeline for token classification :

>>> from transformers import AutoModelForTokenClassification,AutoTokenizer,pipeline
>>> model = AutoModelForTokenClassification.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
>>> tokenizer = AutoTokenizer.from_pretrained('uer/roberta-base-finetuned-cluener2020-chinese')
>>> ner = pipeline('ner', model=model, tokenizer=tokenizer)
>>> ner("江苏警方通报特斯拉冲进店铺")
    [
       {'word': '江', 'score': 0.49153077602386475, 'entity': 'B-address', 'index': 1, 'start': 0, 'end': 1}, 
       {'word': '苏', 'score': 0.6319217681884766, 'entity': 'I-address', 'index': 2, 'start': 1, 'end': 2}, 
       {'word': '特', 'score': 0.5912262797355652, 'entity': 'B-company', 'index': 7, 'start': 6, 'end': 7},
       {'word': '斯', 'score': 0.69145667552948, 'entity': 'I-company', 'index': 8, 'start': 7, 'end': 8}, 
       {'word': '拉', 'score': 0.7054660320281982, 'entity': 'I-company', 'index': 9, 'start': 8, 'end': 9}
    ]

Training data

CLUENER2020 is used as training data. We only use the train set of the dataset.

Training procedure

The model is fine-tuned by UER-py on Tencent Cloud. We fine-tune five epochs with a sequence length of 512 on the basis of the pre-trained model chinese_roberta_L-12_H-768. At the end of each epoch, the model is saved when the best performance on development set is achieved.

python3 finetune/run_ner.py --pretrained_model_path models/cluecorpussmall_roberta_base_seq512_model.bin-250000 \
                            --vocab_path models/google_zh_vocab.txt \
                            --train_path datasets/cluener2020/train.tsv \
                            --dev_path datasets/cluener2020/dev.tsv \
                            --label2id_path datasets/cluener2020/label2id.json \
                            --output_model_path models/cluener2020_ner_model.bin \
                            --learning_rate 3e-5 --epochs_num 5 --batch_size 32 --seq_length 512

Finally, we convert the pre-trained model into Huggingface's format:

python3 scripts/convert_bert_token_classification_from_uer_to_huggingface.py --input_model_path models/cluener2020_ner_model.bin \
                                                                             --output_model_path pytorch_model.bin \
                                                                             --layers_num 12

BibTeX entry and citation info

@article{liu2019roberta,
  title={Roberta: A robustly optimized bert pretraining approach},
  author={Liu, Yinhan and Ott, Myle and Goyal, Naman and Du, Jingfei and Joshi, Mandar and Chen, Danqi and Levy, Omer and Lewis, Mike and Zettlemoyer, Luke and Stoyanov, Veselin},
  journal={arXiv preprint arXiv:1907.11692},
  year={2019}
}

@article{xu2020cluener2020,
  title={CLUENER2020: Fine-grained Name Entity Recognition for Chinese},
  author={Xu, Liang and Dong, Qianqian and Yu, Cong and Tian, Yin and Liu, Weitang and Li, Lu and Zhang, Xuanwei},
  journal={arXiv preprint arXiv:2001.04351},
  year={2020}
 }
 
@article{zhao2019uer,
  title={UER: An Open-Source Toolkit for Pre-training Models},
  author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
  journal={EMNLP-IJCNLP 2019},
  pages={241},
  year={2019}
}

@article{zhao2023tencentpretrain,
  title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
  author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
  journal={ACL 2023},
  pages={217},
  year={2023}
Downloads last month
627
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using uer/roberta-base-finetuned-cluener2020-chinese 1